-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathaugmentation.py
338 lines (266 loc) · 10.8 KB
/
augmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# code in this file is adpated from rpmcruz/autoaugment
# https://github.com/rpmcruz/autoaugment/blob/master/transformations.py
# https://github.com/ildoonet/pytorch-randaugment/blob/master/RandAugment/augmentations.py
import random
import PIL, PIL.ImageOps, PIL.ImageEnhance, PIL.ImageDraw
import numpy as np
from PIL import Image
import math
IMAGENET_SIZE = (224, 224) # (width, height) may set to (244, 224)
_IMAGENET_PCA = {
'eigval': [0.2175, 0.0188, 0.0045],
'eigvec': [
[-0.5675, 0.7192, 0.4009],
[-0.5808, -0.0045, -0.8140],
[-0.5836, -0.6948, 0.4203],
]
}
_CIFAR_MEAN, _CIFAR_STD = (0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)
def ShearX(img, v): # [-0.3, 0.3]
assert -0.3 <= v <= 0.3
return img.transform(img.size, PIL.Image.AFFINE, (1, v, 0, 0, 1, 0))
def ShearY(img, v): # [-0.3, 0.3]
assert -0.3 <= v <= 0.3
return img.transform(img.size, PIL.Image.AFFINE, (1, 0, 0, v, 1, 0))
def TranslateX(img, v): # [-150, 150] => percentage: [-0.45, 0.45]
assert -0.45 <= v <= 0.45
v = v * img.size[0]
return img.transform(img.size, PIL.Image.AFFINE, (1, 0, v, 0, 1, 0))
def TranslateY(img, v): # [-150, 150] => percentage: [-0.45, 0.45]
assert -0.45 <= v <= 0.45
v = v * img.size[1]
return img.transform(img.size, PIL.Image.AFFINE, (1, 0, 0, 0, 1, v))
def Rotate(img, v): # [-30, 30]
assert -30 <= v <= 30
return img.rotate(v)
def AutoContrast(img, _):
return PIL.ImageOps.autocontrast(img)
def Invert(img, _):
return PIL.ImageOps.invert(img)
def Equalize(img, _):
return PIL.ImageOps.equalize(img)
def Flip(img, _): # not from the paper
return PIL.ImageOps.mirror(img)
def Solarize(img, v): # [0, 256]
assert 0 <= v <= 256
return PIL.ImageOps.solarize(img, v)
def SolarizeAdd(img, addition=0, threshold=128):
img_np = np.array(img).astype(np.int)
img_np = img_np + addition
img_np = np.clip(img_np, 0, 255)
img_np = img_np.astype(np.uint8)
img = Image.fromarray(img_np)
return PIL.ImageOps.solarize(img, threshold)
def Posterize(img, v): # [4, 8]
assert 4 <= v <= 8 # FastAA
v = int(v)
return PIL.ImageOps.posterize(img, v)
def Contrast(img, v): # [0.1,1.9]
assert 0.1 <= v <= 1.9
return PIL.ImageEnhance.Contrast(img).enhance(v)
def Color(img, v): # [0.1,1.9]
assert 0.1 <= v <= 1.9
return PIL.ImageEnhance.Color(img).enhance(v)
def Brightness(img, v): # [0.1,1.9]
assert 0.1 <= v <= 1.9
return PIL.ImageEnhance.Brightness(img).enhance(v)
def Sharpness(img, v): # [0.1,1.9]
assert 0.1 <= v <= 1.9
return PIL.ImageEnhance.Sharpness(img).enhance(v)
def RandCrop(img, _):
v = 4
return mean_pad_randcrop(img, v)
def RandCutout(img, _):
v = 16
w, h = img.size
x = random.uniform(0, w)
y = random.uniform(0, h)
x0 = int(min(w, max(0, x - v // 2))) # clip to the range (0, w)
x1 = int(min(w, max(0, x + v // 2)))
y0 = int(min(h, max(0, y - v // 2)))
y1 = int(min(h, max(0, y + v // 2)))
xy = (x0, y0, x1, y1)
color = (125, 123, 114)
# color = (0, 0, 0)
img = img.copy()
PIL.ImageDraw.Draw(img).rectangle(xy, color)
return img
def RandCutout60(img, _):
v = 60
w, h = img.size
x_left = max(0, w // 2 - 256 // 2)
x_right = min(w, w // 2 + 256 // 2)
y_bottom = max(0, h // 2 - 256 // 2)
y_top = min(h, h // 2 + 256 // 2)
x = random.uniform(x_left, x_right)
y = random.uniform(y_bottom, y_top)
x0 = int(min(w, max(0, x - v // 2)))
x1 = int(min(w, max(0, x + v // 2)))
y0 = int(min(h, max(0, y - v // 2)))
y1 = int(min(h, max(0, y + v // 2)))
xy = (x0, y0, x1, y1)
color = (125, 123, 114)
# color = (0, 0, 0)
img = img.copy()
PIL.ImageDraw.Draw(img).rectangle(xy, color)
return img
def RandFlip(img, _):
if random.random() > 0.5:
img = Flip(img, None)
return img
def mean_pad_randcrop(img, v):
# v: Pad with mean value=[125, 123, 114] by v pixels on each side and then take random crop
assert v <= 10, 'The maximum shift should be less then 10'
padded_size = (img.size[0] + 2*v, img.size[1] + 2*v)
new_img = PIL.Image.new('RGB', padded_size, color=(125, 123, 114))
new_img.paste(img, (v, v))
top = random.randint(0, v*2)
left = random.randint(0, v*2)
new_img = new_img.crop((left, top, left + img.size[0], top + img.size[1]))
return new_img
def Identity(img, v):
return img
def RandResizeCrop_imagenet(img, _):
# ported from torchvision
# for ImageNet use only
scale = (0.08, 1.0)
ratio = (3. / 4., 4. / 3.)
size = IMAGENET_SIZE # (224, 224)
def get_params(img, scale, ratio):
width, height = img.size
area = float(width * height)
log_ratio = [math.log(r) for r in ratio]
for _ in range(10):
target_area = area * random.uniform(scale[0], scale[1])
aspect_ratio = math.exp(random.uniform(log_ratio[0], log_ratio[1]))
w = round(math.sqrt(target_area * aspect_ratio))
h = round(math.sqrt(target_area / aspect_ratio))
if 0 < w <= width and 0 < h <= height:
top = random.randint(0, height - h)
left = random.randint(0, width - w)
return left, top, w, h
# fallback to central crop
in_ratio = float(width) / float(height)
if in_ratio < min(ratio):
w = width
h = round(w / min(ratio))
elif in_ratio > max(ratio):
h = height
w = round(h * max(ratio))
else:
w = width
h = height
top = (height - h) // 2
left = (width - w) // 2
return left, top, w, h
left, top, w_box, h_box = get_params(img, scale, ratio)
box = (left, top, left + w_box, top + h_box)
img = img.resize(size=size, resample=PIL.Image.CUBIC, box=box)
return img
def Resize_imagenet(img, size):
w, h = img.size
if isinstance(size, int):
short, long = (w, h) if w <= h else (h, w)
if short == size:
return img
new_short, new_long = size, int(size * long / short)
new_w, new_h = (new_short, new_long) if w <= h else (new_long, new_short)
return img.resize((new_w, new_h), PIL.Image.BICUBIC)
elif isinstance(size, tuple) or isinstance(size, list):
assert len(size) == 2, 'Check the size {}'.format(size)
return img.resize(size, PIL.Image.BICUBIC)
else:
raise Exception
def centerCrop_imagenet(img, _):
# for ImageNet only
# https://github.com/pytorch/vision/blob/master/torchvision/transforms/functional.py
crop_width, crop_height = IMAGENET_SIZE # (224,224)
image_width, image_height = img.size
if crop_width > image_width or crop_height > image_height:
padding_ltrb = [
(crop_width - image_width) // 2 if crop_width > image_width else 0,
(crop_height - image_height) // 2 if crop_height > image_height else 0,
(crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
(crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
]
img = pad(img, padding_ltrb, fill=0)
image_width, image_height = img.size
if crop_width == image_width and crop_height == image_height:
return img
crop_top = int(round((image_height - crop_height) / 2.))
crop_left = int(round((image_width - crop_width) / 2.))
return img.crop((crop_left, crop_top, crop_left + crop_width, crop_top + crop_height))
# def centerCrop_imagenet_default(img):
# return centerCrop_imagenet(img, None)
def _parse_fill(fill, img, name="fillcolor"):
# Process fill color for affine transforms
num_bands = len(img.getbands())
if fill is None:
fill = 0
if isinstance(fill, (int, float)) and num_bands > 1:
fill = tuple([fill] * num_bands)
if isinstance(fill, (list, tuple)):
if len(fill) != num_bands:
msg = ("The number of elements in 'fill' does not match the number of "
"bands of the image ({} != {})")
raise ValueError(msg.format(len(fill), num_bands))
fill = tuple(fill)
return {name: fill}
def pad(img, padding_ltrb, fill=0, padding_mode='constant'):
if isinstance(padding_ltrb, list):
padding_ltrb = tuple(padding_ltrb)
if padding_mode == 'constant':
opts = _parse_fill(fill, img, name='fill')
if img.mode == 'P':
palette = img.getpalette()
image = PIL.ImageOps.expand(img, border=padding_ltrb, **opts)
image.putpalette(palette)
return image
return PIL.ImageOps.expand(img, border=padding_ltrb, **opts)
elif len(padding_ltrb) == 4:
image_width, image_height = img.size
cropping = -np.minimum(padding_ltrb, 0)
if cropping.any():
crop_left, crop_top, crop_right, crop_bottom = cropping
img = img.crop((crop_left, crop_top, image_width - crop_right, image_height - crop_bottom))
pad_left, pad_top, pad_right, pad_bottom = np.maximum(padding_ltrb, 0)
if img.mode == 'P':
palette = img.getpalette()
img = np.asarray(img)
img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right)), padding_mode)
img = Image.fromarray(img)
img.putpalette(palette)
return img
img = np.asarray(img)
# RGB image
if len(img.shape) == 3:
img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right), (0, 0)), padding_mode)
# Grayscale image
if len(img.shape) == 2:
img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right)), padding_mode)
return Image.fromarray(img)
else:
raise Exception
def get_mid_magnitude(l_mags):
ops_mid_magnitude = {'Identity': None,
'ShearX': (l_mags - 1) // 2,
'ShearY': (l_mags - 1) // 2,
'TranslateX': (l_mags - 1) // 2,
'TranslateY': (l_mags - 1) // 2,
'Rotate': (l_mags - 1) // 2,
'AutoContrast': None,
'Invert': None,
'Equalize': None,
'Solarize': l_mags - 1,
'Posterize': l_mags - 1,
'Contrast': (l_mags - 1) // 2,
'Color': (l_mags - 1) // 2,
'Brightness': (l_mags - 1) // 2,
'Sharpness': (l_mags - 1) // 2,
'RandFlip': 'random',
'RandCutout': 'random',
'RandCutout60': 'random',
'RandCrop': 'random',
'RandResizeCrop_imagenet': 'random',
}
return ops_mid_magnitude