-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanalyze_jpeg.py
executable file
·155 lines (134 loc) · 7.3 KB
/
analyze_jpeg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#!/usr/bin/env python3
import cv2
from turbojpeg import TurboJPEG, TJPF_GRAY, TJSAMP_GRAY, TJFLAG_PROGRESSIVE
import colour
import sys
import numpy as np
import matplotlib.pyplot as plt
jpeg = TurboJPEG()
xpdmatrix = np.matrix([[1.69266987, -0.5626429913, -0.08418130087],
[-0.3848780093, 1.108350039, 0.3184210059],
[-0.0598646994, 0.1917970028, 1.04934001]])
xpdmatrix_inv = np.linalg.inv(xpdmatrix)
xpdprim = colour.primaries_whitepoint(xpdmatrix_inv)[0]
xpdwht = colour.primaries_whitepoint(xpdmatrix_inv)[1]
print(xpdprim)
xphasedng_cs = colour.models.RGB_Colourspace('XPhase DNG', xpdprim, xpdwht, use_derived_matrix_RGB_to_XYZ=True, use_derived_matrix_XYZ_to_RGB=True)
#colour.plotting.plot_RGB_colourspaces_in_chromaticity_diagram_CIE1931(colourspaces=[xphasedng_cs])
d65_whitepoint = np.array([0.3127, 0.3290])
srgb_prim = np.array([0.64, 0.33,
0.30, 0.60,
0.15, 0.06])
srgb_cs = colour.models.RGB_Colourspace('sRGB', srgb_prim, d65_whitepoint, use_derived_matrix_RGB_to_XYZ=True, use_derived_matrix_XYZ_to_RGB=True)
dng_cmat = np.array([[ 0.74154849, 0.20734154, 0.10171785],
[ 0.14347096, 0.62066485, 0.15853842],
[ 0.11812658, 0.19156313, 0.73891836]])
xpjmatrix_inv = np.matmul(xpdmatrix_inv, dng_cmat)
xpjprim = colour.primaries_whitepoint(xpjmatrix_inv)[0]
xpjwht = colour.primaries_whitepoint(xpjmatrix_inv)[1]
print(xpjprim)
xphasejpg_cs = colour.models.RGB_Colourspace('XPhase JPG', xpjprim, xpjwht, use_derived_matrix_RGB_to_XYZ=True, use_derived_matrix_XYZ_to_RGB=True)
xpswht = xpdwht
xpsprim = (xpdprim-xpdwht)*0.5 + xpdwht
xphasescl_cs = colour.models.RGB_Colourspace('XPhase Scale', xpsprim, xpswht, use_derived_matrix_RGB_to_XYZ=True, use_derived_matrix_XYZ_to_RGB=True)
#Where the heck did I get this from???
#Linearizing Zwikel's colorchecker shot and then dcamprofing it???
primaries_jpeg = np.array([[0.567968, 0.368446],
[0.30249, 0.64607],
[0.1293, 0.006655]])
whitepoint_jpeg = np.array([0.34567, 0.3585])
colorspace_jpeg = colour.models.RGB_Colourspace('JPEG color space', primaries_jpeg, whitepoint_jpeg, use_derived_matrix_RGB_to_XYZ=True, use_derived_matrix_XYZ_to_RGB=True)
cplot = cplot = colour.plotting.plot_planckian_locus_in_chromaticity_diagram_CIE1931(['A','D50','D65'],standalone=False)
colour.plotting.plot_RGB_colourspaces_in_chromaticity_diagram_CIE1931(axes=cplot[1], colourspaces=[xphasejpg_cs, xphasedng_cs, xphasescl_cs, colorspace_jpeg])
plt.show()
lut = np.array([1.0000e+00, 1.0000e+00, 1.0000e+00, 1.0000e+00, 1.0000e+00,
1.0000e+00, 1.0000e+00, 1.0000e+00, 1.0000e+00, 1.0000e+00,
1.0000e+00, 1.0000e+00, 1.0000e+00, 1.0000e+00, 1.0000e+00,
1.0000e+00, 1.0000e+00, 1.0000e+00, 1.0000e+00, 1.0000e+00,
1.0000e+00, 1.0000e+00, 1.0000e+00, 1.0000e+00, 4.1000e+01,
8.7000e+01, 1.3400e+02, 1.8100e+02, 2.5100e+02, 2.9800e+02,
3.4500e+02, 3.9100e+02, 4.6100e+02, 5.0800e+02, 5.5500e+02,
6.2500e+02, 6.7200e+02, 7.4200e+02, 7.8900e+02, 8.5900e+02,
9.0600e+02, 9.7600e+02, 1.0460e+03, 1.1160e+03, 1.1630e+03,
1.2330e+03, 1.3030e+03, 1.3740e+03, 1.4440e+03, 1.5140e+03,
1.5840e+03, 1.6540e+03, 1.7240e+03, 1.8180e+03, 1.8880e+03,
1.9580e+03, 2.0520e+03, 2.1220e+03, 2.2160e+03, 2.2860e+03,
2.3790e+03, 2.4730e+03, 2.5430e+03, 2.6370e+03, 2.7300e+03,
2.8240e+03, 2.9170e+03, 3.0110e+03, 3.1040e+03, 3.1980e+03,
3.3150e+03, 3.4080e+03, 3.5020e+03, 3.6190e+03, 3.7120e+03,
3.8290e+03, 3.9230e+03, 4.0400e+03, 4.1570e+03, 4.2740e+03,
4.3910e+03, 4.5080e+03, 4.6240e+03, 4.7410e+03, 4.8580e+03,
4.9990e+03, 5.1160e+03, 5.2560e+03, 5.3730e+03, 5.5130e+03,
5.6540e+03, 5.7700e+03, 5.9110e+03, 6.0750e+03, 6.2150e+03,
6.3550e+03, 6.4960e+03, 6.6360e+03, 6.8000e+03, 6.9630e+03,
7.1040e+03, 7.2670e+03, 7.4310e+03, 7.5950e+03, 7.7580e+03,
7.9460e+03, 8.1090e+03, 8.2730e+03, 8.4600e+03, 8.6470e+03,
8.8110e+03, 8.9980e+03, 9.1850e+03, 9.3720e+03, 9.5590e+03,
9.7700e+03, 9.9800e+03, 1.0167e+04, 1.0378e+04, 1.0588e+04,
1.0799e+04, 1.1009e+04, 1.1243e+04, 1.1454e+04, 1.1664e+04,
1.1898e+04, 1.2132e+04, 1.2366e+04, 1.2600e+04, 1.2857e+04,
1.3091e+04, 1.3348e+04, 1.3582e+04, 1.3839e+04, 1.4097e+04,
1.4377e+04, 1.4634e+04, 1.4915e+04, 1.5172e+04, 1.5453e+04,
1.5734e+04, 1.6014e+04, 1.6318e+04, 1.6599e+04, 1.6903e+04,
1.7207e+04, 1.7511e+04, 1.7839e+04, 1.8143e+04, 1.8470e+04,
1.8797e+04, 1.9125e+04, 1.9452e+04, 1.9803e+04, 2.0154e+04,
2.0481e+04, 2.0832e+04, 2.1206e+04, 2.1557e+04, 2.1931e+04,
2.2306e+04, 2.2680e+04, 2.3077e+04, 2.3452e+04, 2.3849e+04,
2.4247e+04, 2.4668e+04, 2.5065e+04, 2.5486e+04, 2.5907e+04,
2.6352e+04, 2.6796e+04, 2.7217e+04, 2.7685e+04, 2.8129e+04,
2.8573e+04, 2.9041e+04, 2.9532e+04, 3.0000e+04, 3.0515e+04,
3.0982e+04, 3.1474e+04, 3.2011e+04, 3.2503e+04, 3.3017e+04,
3.3555e+04, 3.4070e+04, 3.4631e+04, 3.5169e+04, 3.5754e+04,
3.6291e+04, 3.6876e+04, 3.7461e+04, 3.8022e+04, 3.8630e+04,
3.9238e+04, 3.9846e+04, 4.0478e+04, 4.1109e+04, 4.1717e+04,
4.2396e+04, 4.3027e+04, 4.3682e+04, 4.4384e+04, 4.5038e+04,
4.5740e+04, 4.6442e+04, 4.7143e+04, 4.7845e+04, 4.8593e+04,
4.9342e+04, 5.0043e+04, 5.0839e+04, 5.1587e+04, 5.2359e+04,
5.3154e+04, 5.3949e+04, 5.4744e+04, 5.5563e+04, 5.6405e+04,
5.7223e+04, 5.8065e+04, 5.8931e+04, 5.9843e+04, 6.0685e+04,
6.1597e+04, 6.2509e+04, 6.3421e+04, 6.4333e+04, 6.5281e+04,
6.5281e+04, 6.5281e+04, 6.5281e+04, 6.5281e+04, 6.5281e+04,
6.5281e+04, 6.5281e+04, 6.5281e+04, 6.5281e+04, 6.5281e+04,
6.5281e+04, 6.5281e+04, 6.5281e+04, 6.5281e+04, 6.5281e+04,
6.5281e+04, 6.5281e+04, 6.5281e+04, 6.5281e+04, 6.5281e+04,
6.5281e+04, 6.5281e+04, 6.5281e+04, 6.5281e+04, 6.5281e+04,
6.5281e+04])
#LUT output maxes out at 65281
lut /= 65281.0
#make LUT output sRGB instead of linear
#lut = np.where(lut <=0.0031308,12.92*lut,1.055*np.power(lut,1/2.4)-0.055)
with open(sys.argv[1], 'rb') as infile:
planes = jpeg.decode_to_yuv_planes(infile.read())
y = planes[0]/255.0
y = y[0::2,0::2]
u = (planes[1]-128.0)/255.0
v = (planes[2]-128.0)/255.0
if(1):
h = v.shape[0]
w = v.shape[1]
imgdata_yuv = np.dstack((y,u,v))
#print(imgdata_yuv[0])
imgdata_rgb = np.matmul(imgdata_yuv,yuv_rgb_matrix.T)
imgdata_rgb = imgdata_rgb * 255.0
imgdata_rgb = np.minimum(np.maximum(imgdata_rgb,0),255).astype(np.uint8)
imgdata_rgb = lut[imgdata_rgb]
imgdata_rgb = np.clip(np.matmul(imgdata_rgb,cnvmatrix.T),0.0,1.0)
imgdata_rgb = np.where(imgdata_rgb <=0.0031308,12.92*imgdata_rgb,1.055*np.power(imgdata_rgb,1/2.4)-0.055)
imgdata_rgb = np.fliplr(np.flipud(imgdata_rgb))
# imgdata_rgb = imgdata_rgb.reshape(imgdata_yuv.shape)
# ydata = planes[0]
# yhist = np.histogram(ydata,256,range=(0,1))[0]
# print(np.count_nonzero(yhist))
plt.imshow(imgdata_rgb)
plt.show()
else:
plt.figure()
plt.imshow(y)
plt.title('Y')
plt.figure()
plt.imshow(u)
plt.title('U')
plt.figure()
plt.imshow(v)
plt.title('V')
plt.show()