Skip to content

Latest commit

 

History

History
124 lines (101 loc) · 3.38 KB

DEEPSEEKV3.md

File metadata and controls

124 lines (101 loc) · 3.38 KB

The DeepSeek V3 is a mixture of expert (MoE) model.

./mistralrs-server --isq Q4K -i plain -m deepseek-ai/DeepSeek-R1

Note

The non-distill versions of the DeepSeek R1 models share the DeepSeek V3 architecture.

Note

This models supports MoQE which can be activated in the ISQ organization parameter within the various APIs, as demonstrated below:

./mistralrs-server --isq Q4K -i plain -m deepseek-ai/DeepSeek-R1 --organization moqe

Running the distill models

The various distillation models can be run out of the box.

./mistralrs-server -i --isq Q4K plain -m deepseek-ai/DeepSeek-R1-Distill-Llama-8B
./mistralrs-server -i --isq Q4K plain -m deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
./mistralrs-server -i --isq Q4K plain -m deepseek-ai/DeepSeek-R1-Distill-Qwen-32B

HTTP API

./mistralrs-server --isq Q4K --port 1234 plain -m deepseek-ai/DeepSeek-R1
import openai

messages = []
prompt = input("Enter system prompt >>> ")
if len(prompt) > 0:
    messages.append({"role": "system", "content": prompt})


while True:
    prompt = input(">>> ")
    messages.append({"role": "user", "content": prompt})
    completion = client.chat.completions.create(
        model="deepseekv2",
        messages=messages,
        max_tokens=256,
        frequency_penalty=1.0,
        top_p=0.1,
        temperature=0,
    )
    resp = completion.choices[0].message.content
    print(resp)
    messages.append({"role": "assistant", "content": resp})

Python API

from mistralrs import Runner, Which, ChatCompletionRequest, Architecture

runner = Runner(
    which=Which.Plain(
        model_id="deepseek-ai/DeepSeek-R1",
        arch=Architecture.DeepseekV3,
    ),
)

res = runner.send_chat_completion_request(
    ChatCompletionRequest(
        model="mistral",
        messages=[
            {"role": "user", "content": "Tell me a story about the Rust type system."}
        ],
        max_tokens=256,
        presence_penalty=1.0,
        top_p=0.1,
        temperature=0.1,
    )
)
print(res.choices[0].message.content)
print(res.usage)

Rust API

You can find this example here.

use anyhow::Result;
use mistralrs::{
    IsqType, PagedAttentionMetaBuilder, TextMessageRole, TextMessages, TextModelBuilder,
};

#[tokio::main]
async fn main() -> Result<()> {
    let model = TextModelBuilder::new("deepseek-ai/DeepSeek-R1")
        .with_isq(IsqType::Q4K)
        .with_logging()
        .with_paged_attn(|| PagedAttentionMetaBuilder::default().build())?
        .build()
        .await?;

    let messages = TextMessages::new()
        .add_message(
            TextMessageRole::System,
            "You are an AI agent with a specialty in programming.",
        )
        .add_message(
            TextMessageRole::User,
            "Hello! How are you? Please write generic binary search function in Rust.",
        );

    let response = model.send_chat_request(messages).await?;

    println!("{}", response.choices[0].message.content.as_ref().unwrap());
    dbg!(
        response.usage.avg_prompt_tok_per_sec,
        response.usage.avg_compl_tok_per_sec
    );

    Ok(())
}