-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize.py
226 lines (201 loc) · 8.71 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from Utils.utils import setupGPU, load_config, setGPUMemoryLimit, merge_configs, JSONHelper
setupGPU() # call it on startup to prevent OOM errors on my machine
import os, argparse, shutil, re
from collections import defaultdict
from NN import model_from_config, model_to_architecture
from Utils.visualize import generateImage, data_from_dataset, data_from_input, makeImageProcessor
from Utils.WandBUtils import CWBProject
from Utils.utils import upgrade_configs_structure
def _processData(data, model, processImage):
NB_BATCHES = len(data)
for batchId, batch in enumerate(data):
print(f'Batch {batchId}/{NB_BATCHES}....')
(srcB, dstB) = batch
upscaledB = model(srcB)
print(f'Upscaled shape: {upscaledB.shape}')
# all have the same first dimension
N = len(upscaledB)
assert (N == len(srcB)) and (N == len(dstB)), f'srcB={len(srcB)}, dstB={len(dstB)}, upscaledB={len(upscaledB)}'
for i in range(0, N):
yield {
'original': processImage(dstB[i]),
'input': processImage(srcB[i]),
'upscaled': processImage(upscaledB[i])
}
continue
return
def process(folder, visualizationConfig, model, modelArgsOverride, datasetProvider):
if not os.path.exists(folder): os.makedirs(folder)
data, dataset = datasetProvider(model.get_input_shape()[1:])
##############################
modelArgs = {} # inference args: size, scale, shift, reverseArgs
generationParams = {
'mode': 'side by side',
'format': 'png',
'resize': 'resize',
}
if not(visualizationConfig is None):
modelArgs.update(visualizationConfig['model args'])
generationParams = visualizationConfig.get('output', generationParams)
# force override model args
modelArgs.update(modelArgsOverride)
##############################
dataIttr = _processData(
data,
model=lambda x: model(x, **modelArgs),
processImage=makeImageProcessor(dataset.unnormalizeImg)
)
for index, data in enumerate(dataIttr):
generateImage(
data=data,
folder=folder,
index=index,
params=generationParams
)
continue
return
def datasetFrom(args, config):
if args.input is None:
return lambda input_shape: data_from_dataset(config)
# otherwise from input
return lambda input_shape: data_from_input(args.input, input_shape)
def modelArgsOverrideFromArgs(args):
modelArgs = {}
if args.target_size:
modelArgs['size'] = args.target_size
if args.renderer_batch_size:
modelArgs['batchSize'] = args.renderer_batch_size
return modelArgs
def _bestRuns(runs):
byName = defaultdict(list)
for run in runs:
byName[run.name].append(run)
continue
# in each group select the best run
return [min(runs, key=lambda run: run.bestLoss) for runs in byName.values()]
def escape_directory_name(directory_name):
directory_name = directory_name.strip()
directory_name = re.sub(r'[\.<>:"/\\|?*]', '_', directory_name)
return directory_name
def modelsFromArgs(args, config):
if args.model: # load from file
config = upgrade_configs_structure(config)
model = model_from_config(config['model'])
# // print model architecture
model.summary(expand_nested=True)
model.load_weights(args.model)
print('Model loaded successfully.')
yield (model, None, config)
return
# otherwise from wandb project
project = CWBProject(args.wandb_project)
def isAccepted(runName):
runName = runName.lower()
return args.wandb_run_name.lower() in runName
acceptedRuns = [run for run in project.runs() if isAccepted(run.name)]
assert len(acceptedRuns) > 0, f'No runs found for {args.wandb_run_name}'
if args.wandb_only_best: acceptedRuns = _bestRuns(acceptedRuns)
print(f'Found {len(acceptedRuns)} runs for {args.wandb_run_name}:')
for run in acceptedRuns: print(f' {run.name} ({run.fullId}, loss: {run.bestLoss})')
# ensure that user wants to continue and use from all selected runs evaluate the best model
answer = input('Continue? [y/n]: ')
assert answer.lower() == 'y', 'Aborted by user'
byName = defaultdict(list)
for run in acceptedRuns: byName[run.name].append(run)
# return iterator of (model, modelArgs)
configs = [config] if not isinstance(config, list) else config
for runGroup in byName.values():
for run in runGroup:
print(f'Loading model from {run.name} ({run.fullId})...')
bestModel = run.bestModel.pathTo()
parts = [escape_directory_name(run.name)]
if 1 < len(runGroup): parts.append(escape_directory_name(run.id))
for i, config in enumerate(configs):
modelConfigs = merge_configs(run.config, config) # override config with run config
modelConfigs = upgrade_configs_structure(modelConfigs)
import json
print(json.dumps(modelConfigs['architecture'], indent=2))
print('...............................................')
model = model_from_config(modelConfigs['model'])
print(json.dumps(model_to_architecture(model), indent=2))
model.summary(expand_nested=True)
model.load_weights(bestModel)
outputFolder = list(parts)
if 1 < len(configs):
folderName = modelConfigs.get('folder name', f'config_{i}')
outputFolder.append(folderName)
outputFolder = os.path.join(*outputFolder)
yield (model, outputFolder, modelConfigs)
continue
continue
return
def alterConfigFromArgs(args, config):
if args.alter_config is None: return config
# otherwise load from file set of configs and return array of configs
alterConfig = JSONHelper.load(args.alter_config)
assert isinstance(alterConfig, list), 'Alter config must be a list of configs'
return [
merge_configs(config, c) # override config with c
for c in alterConfig
]
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Process arguments.')
parser.add_argument(
'--config', type=str, required=True,
help='Path to a single config file or a multiple config files (they will be merged in order of appearance)',
default=[], action='append',
)
# file with a set of configs to be altered
parser.add_argument('--alter-config', type=str, help='Path to a config file with a set of configs to be altered (optional)')
parser.add_argument('--model', type=str, help='Path to model weights file')
parser.add_argument('--target-size', type=int, help='Target size (optional)')
parser.add_argument('--input', type=str, help='Path to image file or folder (optional)', default=None)
# misc
parser.add_argument('--folder', type=str, help='Path to output folder (optional)', default=None)
parser.add_argument('--gpu-memory-mb', type=int, help='GPU memory limit in Mb (optional)')
parser.add_argument('--renderer-batch-size', type=int, help='Renderer batch size (optional)')
# wandb integration
parser.add_argument('--wandb-project', type=str, help='Wandb project full name (entity/project) (optional)')
parser.add_argument('--wandb-run-name', type=str, help='Wandb run name (optional, requires --wandb-project)')
parser.add_argument('--wandb-only-best', action='store_true', help='Only use best model from wandb run (optional)')
###########################
args = parser.parse_args()
# validate
if args.wandb_project:
assert args.wandb_run_name is not None, 'wandb-project requires wandb-run-name'
assert (args.model is not None) or (args.wandb_project is not None), 'either model weights or wandb-project is required'
assert (args.model is None) or (args.wandb_project is None), 'cannot use both model weights and wandb-project'
###########################
if args.gpu_memory_mb: setGPUMemoryLimit(args.gpu_memory_mb)
folder = os.getcwd()
if args.folder:
folder = os.path.abspath(args.folder)
# clear/create folder
if os.path.exists(folder): shutil.rmtree(folder)
os.makedirs(folder)
pass
config = load_config(args.config, folder=os.getcwd())
# should be specified input flag or config contains 'dataset' section
assert (args.input is not None) or ('dataset' in config), 'either input or dataset section in config is required'
models = modelsFromArgs(
args=args,
config=alterConfigFromArgs(args, config),
)
for model, savePath, modelConfig in models:
savePath = os.path.join(folder, savePath) if savePath else folder
# clear/create folder
if os.path.exists(savePath): shutil.rmtree(savePath)
os.makedirs(savePath)
print('Model loaded successfully. Output folder:', savePath)
# save model config for future reference
JSONHelper.save(os.path.join(savePath, 'model.json'), modelConfig)
process(
model=model,
folder=savePath,
modelArgsOverride=modelArgsOverrideFromArgs(args),
datasetProvider=datasetFrom(args, config),
visualizationConfig=config.get('visualization', None),
)
continue
print('Done.')
pass