-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlearn_environment.py
97 lines (91 loc) · 3.14 KB
/
learn_environment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
from Core.MazeRLWrapper import MazeRLWrapper
from Utils.ExperienceBuffers.CebPrioritized import CebPrioritized
from Agent.DQNAgent import DQNAgent
import time
import Utils
import fit_stage
import os
def learn_environment(model, params):
NAME = params['name']
BATCH_SIZE = params['batch size']
GAMMA = params['gamma']
BOOTSTRAPPED_STEPS = params['bootstrapped steps']
metrics = {}
environments = [
MazeRLWrapper(params['maze']) for _ in range(params['test episodes'])
]
memory = CebPrioritized(maxSize=5000, sampleWeight='abs')
######################################################
def testModel(EXPLORE_RATE):
for e in environments: e.reset()
replays = [replay for replay, _ in Utils.emulateBatch(
environments,
DQNAgent(model, exploreRate=EXPLORE_RATE, noise=params.get('agent noise', 0)),
maxSteps=params.get('max test steps')
)
]
################
# explore if hit the loop
envsIndexes = [i for i, e in enumerate(environments) if e.hitTheLoop]
if envsIndexes:
envs = [environments[i] for i in envsIndexes]
for e in envs: e.Continue()
exploreReplays = Utils.emulateBatch(
envs,
DQNAgent(
model,
exploreRate=params.get('explore rate after loop', 1),
noise=params.get('agent noise after loop', 0)
),
maxSteps=params.get('max steps after loop', 16)
)
for ind, (replay, _) in zip(envsIndexes, exploreReplays):
replays[ind] += replay[1:]
################
for replay in replays:
if BOOTSTRAPPED_STEPS < len(replay):
memory.addEpisode(replay, terminated=True)
return [x.score for x in environments]
######################################################
# collect some experience
for _ in range(2):
testModel(EXPLORE_RATE=0)
#######################
bestModelScore = -float('inf')
for epoch in range(params['epochs']):
T = time.time()
EXPLORE_RATE = params['explore rate'](epoch)
alpha = params.get('alpha', lambda _: 1)(epoch)
print(
'[%s] %d/%d epoch. Explore rate: %.3f. Alpha: %.5f.' % (NAME, epoch, params['epochs'], EXPLORE_RATE, alpha)
)
##################
# Training
trainLoss = fit_stage.train(
model, memory,
{
'gamma': GAMMA,
'batchSize': BATCH_SIZE,
'steps': BOOTSTRAPPED_STEPS,
'episodes': params['train episodes'](epoch),
'alpha': alpha
}
)
print('Avg. train loss: %.4f' % trainLoss)
##################
# test
print('Testing...')
scores = testModel(EXPLORE_RATE)
Utils.trackScores(scores, metrics)
##################
scoreSum = sum(scores)
print('Scores sum: %.5f' % scoreSum)
if (bestModelScore < scoreSum) and (params['warm up epochs'] < epoch):
print('save best model (%.2f => %.2f)' % (bestModelScore, scoreSum))
bestModelScore = scoreSum
model.save_weights('weights/%s.h5' % NAME)
##################
os.makedirs('charts', exist_ok=True)
Utils.plotData2file(metrics, 'charts/%s.jpg' % NAME)
print('Epoch %d finished in %.1f sec.' % (epoch, time.time() - T))
print('------------------')