-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathpretrain_vlm.py
465 lines (394 loc) · 20.5 KB
/
pretrain_vlm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
"""Pretrain vision language model."""
from copy import deepcopy
from functools import partial
import warnings
import torch
from megatron.core import parallel_state, tensor_parallel
from megatron.core.datasets.blended_megatron_dataset_builder import BlendedMegatronDatasetBuilder
from megatron.core.datasets.multimodal_dataset import MockMultimodalDataset, MultimodalDatasetConfig
from megatron.core.enums import ModelType
from megatron.core.models.vision.clip_vit_model import get_num_image_embeddings
from megatron.core.transformer.enums import AttnMaskType
from megatron.core.models.multimodal.llava_model import LLaVAModel, DEFAULT_IMAGE_TOKEN_INDEX
from megatron.core.models.multimodal.llava_spec import (
decoder_model_with_transformer_engine_default_spec,
decoder_model_with_local_default_spec,
)
from megatron.core.models.vision.vit_layer_specs import (
get_vit_layer_with_transformer_engine_spec,
get_vit_layer_with_local_spec,
)
from megatron.core.transformer.spec_utils import import_module
from megatron.core.packed_seq_params import PackedSeqParams
from megatron.training import get_args, get_timers, get_tokenizer, pretrain, print_rank_0
from megatron.training.arguments import core_transformer_config_from_args
from megatron.training.utils import get_batch_on_this_cp_rank
from megatron.core import mpu
from pretrain_gpt import loss_func
def calculate_model_parallel_padding(decoder_seq_len, text_only=False):
args = get_args()
cp_size = args.context_parallel_size
tp_size = args.tensor_model_parallel_size
mp_padding_needed = 0
# TP Comm overlap is performed with combined text+image embeddings.
# text_only flag skips using the full sequence length to calculate padding and uses
# the provided decoder_seq_len
if args.sequence_parallel and args.decoder_tp_comm_overlap and not text_only:
# If TP Comm Overlap is enabled for combined text+image embedding in LM backbone,
# user needs to provide decoder_seq_length with any potential padding needed for SP+CP
assert args.decoder_seq_length is not None, \
"Please provide --decoder-seq-length when using TP Comm overlap for LM backbone"
mp_padding_needed = args.decoder_seq_length - decoder_seq_len
elif args.sequence_parallel or cp_size > 1:
if args.sequence_parallel and cp_size > 1:
# Padding to multiple of tp_size * cp_size*2 when using sequence parallel and context parallel
padding_factor = tp_size * cp_size * 2
elif cp_size > 1:
padding_factor = cp_size * 2
elif args.sequence_parallel:
padding_factor = tp_size
mp_padding_needed = int((decoder_seq_len + padding_factor - 1) // (padding_factor) * (padding_factor)) - decoder_seq_len
args.decoder_seq_length = decoder_seq_len + mp_padding_needed
else:
args.decoder_seq_length = decoder_seq_len
return mp_padding_needed
def model_provider(
pre_process=True, post_process=True, add_encoder=True, add_decoder=True, parallel_output=True
) -> LLaVAModel:
"""Builds the model.
Note: currently, only LLaVA model is supported. Follow-up changes will make this configurable.
Args:
pre_process (bool): Include the embedding layer in the gpt decoder (used with pipeline parallelism). Defaults to True.
post_process (bool): Include an output layer and a layernorm in the gpt decoder (used with pipeline parallelism). Defaults to True.
add_encoder (bool): Construct the encoder module (used with pipeline parallelism). Defaults to True. When we use pipelining, the encoder
will live on only a subset of the pipeline stages (specifically, only the first stage).
add_decoder (bool): Construct the decoder module (used with pipeline parallelism). Defaults to True. When we use pipelining, the decoder
will live on only a subset of the pipeline stages (specifically, every stage after the first one).
parallel_output (bool): Enable model parallel output.
Returns:
model (megatron.core.models.multimodal.llava_model.LLaVAModel): A multimodal model
"""
args = get_args()
vision_model_type = "clip"
assert args.ckpt_format == 'torch', "Only ckpt-format torch is supported for VLM training currently."
num_image_embeddings = get_num_image_embeddings(
args.img_h, args.img_w, args.patch_dim, vision_model_type, args.disable_vision_class_token,
class_token_len=1, pixel_shuffle=False, use_tile_tags=False
)
old_seq_length = args.seq_length
# dataloader-seq-length is required to determine the length of text seq len
if args.dataloader_seq_length is None:
args.dataloader_seq_length = args.seq_length
# decoder_seq_len denotes the language model sequence length.
decoder_seq_len = args.dataloader_seq_length + num_image_embeddings
# seq_length and encoder_seq_length denote the vision model sequence length. Override if the user provided something else.
args.seq_length = args.encoder_seq_length = num_image_embeddings
if torch.distributed.get_rank() == 0 and old_seq_length != args.seq_length:
warnings.warn(
f"Changed seq_length and encoder_seq_length (vision model sequence length) from {old_seq_length} to num_image_tokens ({num_image_embeddings})"
)
mp_padding_needed = calculate_model_parallel_padding(decoder_seq_len)
args.max_position_embeddings = max(args.max_position_embeddings, args.decoder_seq_length)
print_rank_0('building a multimodal model ...')
language_transformer_config = core_transformer_config_from_args(get_args())
if args.decoder_tp_comm_overlap:
assert args.transformer_impl == "transformer_engine", \
"TransformerEngine is needed to support Decoder TP Comm overlap"
language_transformer_config.tp_comm_overlap = args.decoder_tp_comm_overlap
if args.spec is not None:
language_transformer_layer_spec = import_module(args.spec)
elif args.transformer_impl == "transformer_engine":
language_transformer_layer_spec = decoder_model_with_transformer_engine_default_spec(
args.num_experts, args.moe_grouped_gemm
)
else: # transformer_impl == "local"
language_transformer_layer_spec = decoder_model_with_local_default_spec(
args.num_experts, args.moe_grouped_gemm
)
# Prepare mask type for any required padding to support CP/SP sequence sharding.
if mp_padding_needed > 0:
if language_transformer_layer_spec.submodules.self_attention.params.get('attn_mask_type', '') == AttnMaskType.causal:
language_transformer_layer_spec.submodules.self_attention.params['attn_mask_type'] = AttnMaskType.padding_causal
elif language_transformer_layer_spec.submodules.self_attention.params.get('attn_mask_type', '') == AttnMaskType.no_mask:
language_transformer_layer_spec.submodules.self_attention.params['attn_mask_type'] = AttnMaskType.padding
if args.transformer_impl == "transformer_engine":
vision_transformer_layer_spec = get_vit_layer_with_transformer_engine_spec()
else: # transformer_impl == "local"
vision_transformer_layer_spec = get_vit_layer_with_local_spec()
# TODO: Make these configurable via input .yaml config.
vision_transformer_config = deepcopy(language_transformer_config)
vision_transformer_config.num_layers = args.encoder_num_layers
vision_transformer_config.first_pipeline_num_layers = None
vision_transformer_config.last_pipeline_num_layers = None
vision_transformer_config.vision_model_type = vision_model_type
vision_transformer_config.context_parallel_size = 1 # Force CP=1 for Vision Transformer
if vision_transformer_config.sequence_parallel:
print_rank_0("> Disabling Sequence parallelism in Vision Transformer. Not yet supported")
vision_transformer_config.sequence_parallel = False
if vision_transformer_config.tp_comm_overlap:
print_rank_0("> Disabling TP Comm overlap in Vision Transformer. Not yet supported")
vision_transformer_config.tp_comm_overlap = False
vision_projection_type = "mlp"
vision_projection_config = deepcopy(language_transformer_config)
vision_projection_config.context_parallel_size = 1 # Force CP=1 for Vision Projection
if vision_projection_config.sequence_parallel:
print_rank_0("> Disabling Sequence parallelism in Vision Projection. Not yet supported")
vision_projection_config.sequence_parallel = False
if vision_projection_config.tp_comm_overlap:
print_rank_0("> Disabling TP Comm overlap in Vision Projection. Not yet supported")
vision_projection_config.tp_comm_overlap = False
if args.encoder_pipeline_model_parallel_size > 0:
assert (
args.encoder_pipeline_model_parallel_size == 1
), "ViT can only live on 1 pipeline stage."
vision_transformer_config.pipeline_model_parallel_size = (
args.encoder_pipeline_model_parallel_size
)
vision_projection_config.pipeline_model_parallel_size = (
args.encoder_pipeline_model_parallel_size
)
if args.encoder_tensor_model_parallel_size > 0:
vision_transformer_config.tensor_model_parallel_size = (
args.encoder_tensor_model_parallel_size
)
vision_projection_config.tensor_model_parallel_size = (
args.encoder_tensor_model_parallel_size
)
vision_projection_modules = deepcopy(language_transformer_layer_spec.submodules.mlp.submodules)
if args.virtual_pipeline_model_parallel_size:
raise NotImplementedError("virtual pipeline model parallelism is not supported yet.")
model = LLaVAModel(
language_transformer_config=language_transformer_config,
language_transformer_layer_spec=language_transformer_layer_spec,
language_vocab_size=args.padded_vocab_size,
language_max_sequence_length=args.decoder_seq_length,
vision_transformer_config=vision_transformer_config,
vision_transformer_layer_spec=vision_transformer_layer_spec,
drop_vision_class_token=args.disable_vision_class_token,
vision_projection_config=vision_projection_config,
vision_projection_layer_spec=vision_projection_modules,
vision_projection_type=vision_projection_type,
parallel_output=parallel_output,
language_position_embedding_type=args.position_embedding_type,
language_rotary_percent=args.rotary_percent,
language_rope_scaling=args.use_rope_scaling,
pre_process=pre_process,
post_process=post_process,
add_encoder=add_encoder,
add_decoder=add_decoder,
img_h=args.img_h,
img_w=args.img_w,
patch_dim=args.patch_dim,
)
model.freeze(
freeze_language_model=args.freeze_LM,
freeze_vision_model=args.freeze_ViT,
freeze_vision_projection=False,
)
return model
def train_valid_test_datasets_provider(train_val_test_num_samples):
"""Build the train test and validation datasets.
Args:
train_val_test_num_samples : A list containing the number of samples in train, validation, and test sets.
Returns:
train_ds, val_ds, test_ds (megatron.core.datasets.multimodal_dataset.MockMultimodalDataset): Train, validation, and test datasets, respectively.
"""
args = get_args()
config = MultimodalDatasetConfig(
random_seed=args.seed,
split=args.split,
sequence_length=args.dataloader_seq_length,
tokenizer=get_tokenizer(),
reset_position_ids=args.reset_position_ids,
reset_attention_mask=args.reset_attention_mask,
eod_mask_loss=args.eod_mask_loss,
image_h=args.img_h,
image_w=args.img_w,
preprocess_func=_preprocess_data_for_llava,
)
print_rank_0("> building train, validation, and test datasets for multimodal ...")
train_ds, valid_ds, test_ds = BlendedMegatronDatasetBuilder(
MockMultimodalDataset,
train_val_test_num_samples,
lambda: parallel_state.get_tensor_model_parallel_rank() == 0,
config,
).build()
print_rank_0("> finished creating multimodal datasets ...")
return train_ds, valid_ds, test_ds
def _preprocess_data_for_llava(data):
"""Preprocess data sample to the format expected by a LLaVA model.
Note: This doesn't support all the different modes in the official LLaVA repo yet.
Args:
data (dict): Data sample with keys like 'image', 'tokens', etc.
Returns:
data (dict): Processed data sample suitable for the model.
"""
# Prepend image token index to tokens.
data["tokens"] = torch.cat(
[
DEFAULT_IMAGE_TOKEN_INDEX
* torch.ones(1, dtype=data["tokens"].dtype, device=data["tokens"].device),
data["tokens"],
]
)
# Prepend labels accordingly.
data["labels"] = torch.cat([data["tokens"][1].unsqueeze(0), data["labels"]])
# Zero loss mask for the image token index.
data["loss_mask"] = torch.cat(
[
torch.zeros(1, dtype=data["loss_mask"].dtype, device=data["loss_mask"].device),
data["loss_mask"],
]
)
# Add one more position id.
data["position_ids"] = torch.cat(
[data["position_ids"], data["position_ids"][-1].unsqueeze(0) + 1]
)
return data
def get_batch(data_iterator):
"""Generate a batch.
Args:
data_iterator: Iterable dataset.
Returns:
sample: A data sample with images, tokens, etc.
"""
def _get_packed_seq_params(tokens, img_seq_len, mp_padding_needed):
batch_size = tokens.shape[0]
# Calculate the valid token seq len that LM backbone should compute on
combined_valid_seqlen = tokens.shape[1] + img_seq_len - mp_padding_needed
cu_seqlens = torch.arange(
0, (batch_size + 1) * (combined_valid_seqlen), step=(combined_valid_seqlen), dtype=torch.int32, device=tokens.device)
# Calculate the total padded token seq len
combined_padded_seqlen = tokens.shape[1] + img_seq_len
cu_seqlens_padded = None
qkv_format = 'sbhd'
if cp_size > 1:
# Provide cu_seqlens_<q/kv>_padded for CP support
cu_seqlens_padded = torch.arange(
0, (batch_size + 1) * (combined_padded_seqlen), step=(combined_padded_seqlen), dtype=torch.int32, device=tokens.device)
# CP with padding mask type requires THD format
qkv_format = 'thd'
packed_seq_params = PackedSeqParams(
cu_seqlens_q=cu_seqlens,
cu_seqlens_kv=cu_seqlens,
cu_seqlens_q_padded=cu_seqlens_padded,
cu_seqlens_kv_padded=cu_seqlens_padded,
max_seqlen_q=combined_padded_seqlen,
max_seqlen_kv=combined_padded_seqlen,
qkv_format=qkv_format,
)
return packed_seq_params
args = get_args()
cp_size = args.context_parallel_size
# Broadcast data.
if data_iterator is not None:
data = next(data_iterator)
else:
data = None
data_i = tensor_parallel.broadcast_data(["tokens", "position_ids", "labels"], data, torch.int64)
data_f = tensor_parallel.broadcast_data(["image", "loss_mask"], data, torch.float32)
batch = dict()
packed_seq_params = None
image_token_mask = None
# Create batch with tokens and position_ids for CP sharding.
tokens = data_i["tokens"].long()
position_ids = data_i["position_ids"].long()
labels = data_i["labels"].long()
loss_mask = data_f["loss_mask"].float()
images = data_f["image"].float()
if cp_size > 1 or args.sequence_parallel:
vision_model_type = "clip"
# Calculate the number of image embedding tokens will be added to text tokens
num_image_embeddings_per_tile = get_num_image_embeddings(
args.img_h, args.img_w, args.patch_dim, vision_model_type, args.disable_vision_class_token, 1
)
# Pad to make sure the text sequence can be sharded equally by CP chunks.
mp_padding_needed_for_text = calculate_model_parallel_padding(tokens.shape[1], text_only=True)
if mp_padding_needed_for_text > 0:
tokens, position_ids, labels, loss_mask = [torch.nn.functional.pad(item, (0, mp_padding_needed_for_text)) for item in (tokens, position_ids, labels, loss_mask)]
# Image token mask must be supplied before distributed sequence to CP ranks.
image_token_mask = tokens == DEFAULT_IMAGE_TOKEN_INDEX
num_images_per_sample = torch.sum(image_token_mask, dim=-1)
img_seq_len = (num_image_embeddings_per_tile * num_images_per_sample - num_images_per_sample).max()
packed_seq_params = _get_packed_seq_params(tokens, img_seq_len, mp_padding_needed_for_text)
# slice batch along sequence dimension for context parallelism
batch = get_batch_on_this_cp_rank({"tokens": tokens, "position_ids": position_ids})
attention_mask = None # Use the attention mask type defined in layer spec. Typically no mask for the vision model and causal mask for the vision model.
return batch["tokens"], batch["position_ids"], labels, images, loss_mask, attention_mask, image_token_mask, packed_seq_params
def forward_step(data_iterator, model: LLaVAModel):
"""Forward training step.
Args:
data_iterator: Iterable dataset.
model (megatron.core.models.multimodal.llava_model.LLaVAModel): Multimodal model
Returns:
output_tensor (torch.Tensor): Loss of shape [b, s] if labels are provided, otherwise logits of shape [b, s, vocab_size].
loss_func (callable): Loss function with a loss mask specified.
"""
timers = get_timers()
# Get the batch.
timers('batch-generator', log_level=2).start()
tokens, position_ids, labels, images, loss_mask, attention_mask, image_token_mask, packed_seq_params = get_batch(data_iterator)
timers('batch-generator').stop()
output_tensor, loss_mask = model(
images, tokens, position_ids, attention_mask, labels, loss_mask, image_token_mask=image_token_mask, packed_seq_params=packed_seq_params
)
return output_tensor, partial(loss_func, loss_mask)
def add_vlm_extra_args(parser):
"""Extra arguments."""
group = parser.add_argument_group(title='vision language model specific arguments')
group.add_argument(
'--freeze-LM', action='store_true', default=False, help="Freeze language model weights"
)
group.add_argument(
'--freeze-ViT', action='store_true', default=False, help="Freeze vision model (ViT) weights"
)
group.add_argument(
"--disable-vision-class-token",
action="store_true",
default=False,
help="Drop vision model class token",
)
group.add_argument("--dataloader-seq-length", type=int, help="Make dataloader to produce sequences of specific length.")
group.add_argument("--decoder-tp-comm-overlap", action="store_true", default=False, help="Enables the overlap of "
"Tensor parallel communication and GEMM kernels in Decoder only. "
"Please provide decoder-seq-length when using this feature.")
return parser
def llava_embedding_ranks(pp_ranks):
"""LLava's embedding ranks consist of the decoder's first and last ranks (ie, the ViT has no embeddings).
Args:
pp_ranks: A list of global ranks that constitute a pipeline group.
"""
args = get_args()
# encoder size is also the index to the first rank of the decoder.
epp = args.encoder_pipeline_model_parallel_size
last_rank = pp_ranks[-1]
if len(pp_ranks) == 1 or pp_ranks[epp] == last_rank:
return [last_rank]
else:
return [pp_ranks[epp], last_rank]
def llava_position_embedding_ranks(pp_ranks):
"""LLava's embedding ranks consist of the singular rank of the model or the decoder's first rank.
Args:
pp_ranks: A list of global ranks that constitute a pipeline group.
"""
args = get_args()
# encoder size is also the index to the first rank of the decoder.
epp = args.encoder_pipeline_model_parallel_size
last_rank = pp_ranks[-1]
if len(pp_ranks) == 1:
return [last_rank]
else:
return [pp_ranks[epp]]
if __name__ == "__main__":
train_valid_test_datasets_provider.is_distributed = True
pretrain(
train_valid_test_datasets_provider,
model_provider,
ModelType.encoder_and_decoder,
forward_step,
args_defaults={'tokenizer_type': 'GPT2BPETokenizer'},
extra_args_provider=add_vlm_extra_args,
get_embedding_ranks=llava_embedding_ranks,
get_position_embedding_ranks=llava_position_embedding_ranks,
)