-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathsummarize.py
836 lines (775 loc) · 37.7 KB
/
summarize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import ast
import os
from pathlib import Path
import evaluate
import numpy as np
import torch
from datasets import load_dataset
from transformers import (AutoModel, AutoModelForCausalLM,
AutoModelForSeq2SeqLM, GenerationConfig)
from utils import (DEFAULT_HF_MODEL_DIRS, add_common_args, load_tokenizer,
read_model_name, supports_inflight_batching)
import tensorrt_llm
import tensorrt_llm.profiler as profiler
from tensorrt_llm._utils import mpi_broadcast, str_dtype_to_torch
from tensorrt_llm.logger import logger
from tensorrt_llm.models.qwen.utils import make_context
from tensorrt_llm.runtime import PYTHON_BINDINGS, ModelRunner
from tensorrt_llm.tools.ppl import ppl
if PYTHON_BINDINGS:
from tensorrt_llm.runtime import ModelRunnerCpp
from prompt_lookup.run_dtm_pld import run_dtm_pld
def main(args):
runtime_rank = tensorrt_llm.mpi_rank()
logger.set_level(args.log_level)
test_hf = args.test_hf and runtime_rank == 0 # only run hf on rank 0
test_trt_llm = args.test_trt_llm
model_name, model_version = read_model_name(args.engine_dir)
if args.hf_model_dir is None:
logger.warning(
"hf_model_dir is not specified. Try to infer from model_name, but this may be incorrect."
)
if model_name in DEFAULT_HF_MODEL_DIRS:
args.hf_model_dir = DEFAULT_HF_MODEL_DIRS[model_name]
else:
args.hf_model_dir = None
if args.tokenizer_dir is None:
args.tokenizer_dir = args.hf_model_dir
profiler.start('load tokenizer')
tokenizer, pad_id, end_id = load_tokenizer(
tokenizer_dir=args.tokenizer_dir,
vocab_file=args.vocab_file,
model_name=model_name,
model_version=model_version,
tokenizer_type=args.tokenizer_type,
)
profiler.stop('load tokenizer')
logger.info(
f'Load tokenizer takes: {profiler.elapsed_time_in_sec("load tokenizer")} sec'
)
if args.eval_task == 'code_completion':
dataset_name = "openai_humaneval"
dataset_revision = None
dataset_input_key = 'prompt'
dataset_output_key = 'canonical_solution'
dataset_split = 'test'
elif args.eval_task == 'summarize':
dataset_name = "ccdv/cnn_dailymail"
dataset_revision = "3.0.0"
dataset_input_key = 'article'
dataset_output_key = 'highlights'
dataset_split = 'test'
elif args.eval_task == 'summarize_long':
dataset_name = "tau/zero_scrolls"
dataset_revision = 'squality'
dataset_input_key = 'input'
dataset_output_key = 'output'
dataset_split = 'validation' # only this split contains reference strings
elif args.eval_task == "eval_context_ppl":
dataset_name = "SlimPajama-6B"
dataset_revision = None
dataset_input_key = 'text'
dataset_output_key = 'text'
dataset_split = 'test'
args.output_len = 1 # Only want to compute the ppl of context
args.eval_ppl = True
logger.warning(
f"Run task '{args.eval_task}', setting 'output_len' to 1, and enable 'eval_ppl'."
)
if args.dataset_dir is not None and isinstance(args.dataset_dir, str):
args.dataset_dir = args.dataset_dir.rstrip('/')
if args.dataset_dir.endswith(dataset_name):
dataset_name = args.dataset_dir
else:
dataset_name = f"{args.dataset_dir}/{dataset_name}"
dataset = load_dataset(dataset_name,
dataset_revision,
cache_dir=args.dataset_cache_dir,
split=dataset_split)
max_batch_size = args.batch_size
# runtime parameters
top_k = args.top_k
top_p = args.top_p
output_len = args.output_len
test_token_num = args.max_input_length
max_attention_window_size = args.max_attention_window_size
sink_token_length = args.sink_token_length
if args.end_id:
end_id = args.end_id
stop_words_list = None
if args.stop_words:
stop_words_list = tensorrt_llm.runtime.decode_words_list(
args.stop_words, tokenizer)
if model_version == 'glm4': # add default stop token ids for GLM-4
glm4_stop_ids = [[151329], [151336], [151338]]
if stop_words_list is None:
stop_words_list = [glm4_stop_ids] * args.batch_size
else:
for req_stop_words_list in stop_words_list:
req_stop_words_list.extend(glm4_stop_ids)
bad_words_list = None
if args.bad_words:
bad_words_list = tensorrt_llm.runtime.decode_words_list(
args.bad_words, tokenizer)
num_beams = args.num_beams
num_return_sequences = args.num_return_sequences
num_sequences = args.num_return_sequences or num_beams
assert num_beams == 1 or num_sequences <= num_beams
temperature = args.temperature
length_penalty = args.length_penalty
early_stopping = args.early_stopping
repetition_penalty = args.repetition_penalty
presence_penalty = args.presence_penalty
frequency_penalty = args.frequency_penalty
random_seed = args.random_seed
torch.manual_seed(random_seed)
output_dir = Path(args.output_dir) if args.output_dir else None
if output_dir is not None:
output_dir.mkdir(exist_ok=True, parents=True)
if test_trt_llm:
with (output_dir / 'trtllm.out').open('w') as f:
f.write(f'Engine path: {args.engine_dir}\n')
f.write(f'Tokenizer path: {args.tokenizer_dir}\n')
if test_hf:
with (output_dir / 'hf.out').open('w') as f:
f.write(f'Model path: {args.hf_model_dir}\n')
f.write(f'Tokenizer path: {args.tokenizer_dir}\n')
# TODO: Add random_seed flag in gptj
rouge_dir = args.rouge_dir if args.rouge_dir and os.path.exists(
args.rouge_dir) else "rouge"
metric_tensorrt_llm = [
evaluate.load(rouge_dir) for _ in range(num_sequences)
]
metric_hf = [evaluate.load(rouge_dir) for _ in range(num_sequences)]
for i in range(num_sequences):
metric_tensorrt_llm[i].seed = 0
metric_hf[i].seed = 0
ppls_trt_llm = [[] for _ in range(num_sequences)]
ppls_hf = [[] for _ in range(num_sequences)]
def _prepare_inputs(batch_input_texts,
eval_task='summarize',
add_special_tokens=True,
min_input_length=0):
batch_size = len(batch_input_texts)
append_str = ' TL;DR: ' if eval_task == 'summarize' else ''
batch_input_ids = []
for i in range(batch_size):
curr_text = batch_input_texts[i] + append_str
curr_text = curr_text.strip().replace(" n't", "n't")
# TODO: The below lines are used to be compatible with the original code; may need fix
if 'GLM' in model_name and model_version in ('chatglm2',
'chatglm3'):
input_ids = tokenizer.encode(curr_text,
return_tensors='pt').squeeze(0)
input_ids = input_ids[:test_token_num]
elif 'qwen' in model_name.lower() and model_version == 'qwen':
# use make_content to generate prompt
system_prompt = "You are a useful assistant, please directly output the corresponding summary according to the article entered by the user."
_, input_id_list = make_context(
tokenizer=tokenizer,
query=curr_text,
history=[],
system=system_prompt,
max_input_length=test_token_num,
)
input_ids = torch.tensor(input_id_list)
else:
if 'qwen' in model_name.lower() and 'qwen2' in model_version:
messages = [{
"role":
"system",
"content":
"You are a helpful assistant, please summarize the article entered by the user with one or two sentences."
}, {
"role": "user",
"content": curr_text
}]
curr_text = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True)
input_ids = tokenizer.encode(
curr_text,
return_tensors='pt',
add_special_tokens=add_special_tokens,
truncation=True,
max_length=test_token_num).squeeze(0)
if input_ids.numel() > min_input_length:
batch_input_ids.append(input_ids)
return batch_input_ids
def eval_trt_llm(datapoint,
eval_task='summarize',
eval_ppl=False,
add_special_tokens=True,
min_input_length=0,
runner=None):
batch_size = len(datapoint[dataset_input_key])
batch_input_ids = _prepare_inputs(datapoint[dataset_input_key],
eval_task=eval_task,
add_special_tokens=add_special_tokens,
min_input_length=min_input_length)
batch_size = len(batch_input_ids)
if batch_size == 0:
return [], [], [], {}
input_lengths = [x.size(0) for x in batch_input_ids]
if args.prompt_lookup_config is not None:
# Speculative decoding of Prompt-Lookup-Decoding (PLD)
outputs = run_dtm_pld(batch_input_ids,
args,
runtime_rank,
end_id,
pad_id,
stop_words_list,
bad_words_list,
tokenizer.vocab_size,
target_runner=runner)
if not args.streaming: # Unpack runner from the return value in No-Streaming mode
outputs, runner = list(outputs)[0]
else: # Normal run
with torch.no_grad():
outputs = runner.generate(
batch_input_ids,
max_new_tokens=output_len,
max_attention_window_size=max_attention_window_size,
sink_token_length=sink_token_length,
end_id=end_id,
pad_id=pad_id,
temperature=temperature,
top_k=top_k,
top_p=top_p,
stop_words_list=stop_words_list,
bad_words_list=bad_words_list,
num_beams=num_beams,
num_return_sequences=num_return_sequences,
length_penalty=length_penalty,
early_stopping=early_stopping,
repetition_penalty=repetition_penalty,
presence_penalty=presence_penalty,
frequency_penalty=frequency_penalty,
lora_uids=args.lora_task_uids,
lookahead_config=args.lookahead_config,
output_sequence_lengths=True,
return_dict=True,
random_seed=random_seed,
medusa_choices=args.medusa_choices,
eagle_choices=args.eagle_choices)
torch.cuda.synchronize()
# Extract a list of tensors of shape beam_width x output_ids.
if runtime_rank == 0:
output_ids = outputs['output_ids']
output_beams_list = [
tokenizer.batch_decode(beam_tokens[:, input_lengths[i]:],
skip_special_tokens=True)
for i, beam_tokens in enumerate(output_ids)
]
output_ids_list = [
beam_tokens[:, input_lengths[i]:]
for i, beam_tokens in enumerate(output_ids)
]
ppls = [[] for _ in range(batch_size)]
lengths_info = {
'input_lengths': input_lengths,
'seq_lengths': outputs["sequence_lengths"].cpu().tolist(),
}
if eval_ppl:
seq_lengths = outputs['sequence_lengths']
context_logits = outputs['context_logits']
# Remove the first generation logits which are same to last
# context logits.
generation_logits = outputs['generation_logits'][:, :, 1:]
for batch_idx in range(batch_size):
# [batch, beam, step]
for beam_idx in range(num_sequences):
curr_len = seq_lengths[batch_idx, beam_idx]
curr_ctx_len = input_lengths[batch_idx]
curr_gen_len = curr_len - curr_ctx_len
curr_ids = output_ids[batch_idx, beam_idx, 1:curr_len]
curr_logits = torch.cat([
context_logits[batch_idx],
generation_logits[batch_idx,
beam_idx, :curr_gen_len - 1]
],
dim=0)
curr_ppl = ppl(curr_logits, curr_ids)
logger.debug(f"TensorRT-LLM PPL: {curr_ppl:.3f} | "
f"Generation length: {curr_gen_len}")
ppls[batch_idx].append(curr_ppl)
return output_beams_list, output_ids_list, ppls, lengths_info
return [], [], [], {}
def eval_hf(datapoint,
eval_task='summarize',
eval_ppl=False,
add_special_tokens=True,
min_input_length=0):
batch_size = len(datapoint[dataset_input_key])
if batch_size > 1:
logger.warning(
f"HF does not support batch_size > 1 to verify correctness due to padding. Current batch size is {batch_size}"
)
batch_input_ids = _prepare_inputs(datapoint[dataset_input_key],
eval_task=eval_task,
add_special_tokens=add_special_tokens,
min_input_length=min_input_length)
batch_size = len(batch_input_ids)
if batch_size == 0:
return [], [], [], [[] for _ in range(batch_size)]
input_lengths = [x.size(0) for x in batch_input_ids]
# Left padding for HF
max_length = max(input_lengths)
paddings = [
torch.ones(max_length - l, dtype=torch.int32) * pad_id
for l in input_lengths
]
batch_input_ids = [
torch.cat([pad, x]) for x, pad in zip(batch_input_ids, paddings)
]
batch_input_ids = torch.stack(batch_input_ids)
batch_input_ids = batch_input_ids.cuda()
# specialization for HF
if early_stopping in [0, 1]:
local_early_stopping = bool(early_stopping)
else:
local_early_stopping = "never"
with torch.no_grad():
hf_config = {}
if num_beams == 1:
hf_config.update({
"top_k": top_k,
"top_p": top_p,
"do_sample": True,
})
else:
hf_config.update({
"num_beams": num_beams,
"early_stopping": local_early_stopping,
})
outputs = model.generate(batch_input_ids,
max_new_tokens=output_len,
num_return_sequences=num_sequences,
temperature=temperature,
eos_token_id=end_id,
pad_token_id=pad_id,
length_penalty=length_penalty,
output_scores=True,
return_dict_in_generate=True,
**hf_config)
if eval_ppl and batch_size == 1:
# model.generate cannot return context logits?
# Will cause additional latency
context_outputs = model(batch_input_ids)
output_ids = outputs['sequences']
tokens_list = output_ids[:, max_length:].tolist()
output_ids = output_ids.reshape([batch_size, num_sequences, -1])
output_lines_list = [
tokenizer.batch_decode(output_ids[:, i, max_length:],
skip_special_tokens=True)
for i in range(num_sequences)
]
ppls = [[] for _ in range(batch_size)]
if eval_ppl and batch_size == 1:
# Only for batch size of 1
seq_lens = (output_ids
!= end_id).logical_and(output_ids != pad_id).sum(dim=-1)
context_logits = context_outputs['logits']
# Remove the first generation logits which are same to last context logits
generation_logits = outputs['scores'][1:]
# When output_len is 1, generation_logits would be () and lead to error if we do torch.stack
if len(generation_logits) == 0:
generation_logits = torch.empty(
[context_logits.shape[0], 0, context_logits.shape[-1]],
device=context_logits.device)
else:
generation_logits = torch.stack(generation_logits, dim=1)
_, max_gen_len, voc_size = generation_logits.size()
generation_logits = generation_logits.view(batch_size, num_beams,
max_gen_len, voc_size)
for batch_idx in range(batch_size):
for beam_idx in range(num_sequences):
curr_len = seq_lens[batch_idx, beam_idx]
curr_ctx_len = input_lengths[batch_idx]
curr_gen_len = curr_len - curr_ctx_len
curr_ids = output_ids[batch_idx, beam_idx, 1:curr_len]
curr_logits = torch.cat([
context_logits[batch_idx],
generation_logits[batch_idx,
beam_idx, :curr_gen_len - 1]
],
dim=0)
curr_ppl = ppl(curr_logits, curr_ids)
logger.debug(
f"HF PPL: {curr_ppl:.3f} | Generation length: {curr_gen_len}"
)
ppls[batch_idx].append(curr_ppl)
return output_lines_list, tokens_list, ppls
if test_trt_llm:
if not supports_inflight_batching(args.engine_dir):
logger.warning(
"The given engine does not support in-flight batching, fallback to python session"
)
args.use_py_session = True
if not PYTHON_BINDINGS and not args.use_py_session:
logger.warning(
"Python bindings of C++ session is unavailable, fallback to Python session."
)
args.use_py_session = True
if args.return_all_generated_tokens:
raise ValueError(
"Returning all the generated tokens at each step is not supported in summarize.py"
)
logger.info(
f"Using {'Python' if args.use_py_session else 'C++'} session")
runner_cls = ModelRunner if args.use_py_session else ModelRunnerCpp
runner_kwargs = dict(engine_dir=args.engine_dir,
rank=runtime_rank,
debug_mode=args.debug_mode,
gpu_weights_percent=args.gpu_weights_percent)
if args.medusa_choices is not None:
args.medusa_choices = ast.literal_eval(args.medusa_choices)
assert args.temperature == 1.0, "Medusa should use temperature == 1.0"
assert args.num_beams == 1, "Medusa should use num_beams == 1"
runner_kwargs.update(medusa_choices=args.medusa_choices)
if args.eagle_choices is not None or args.eagle_posterior_threshold is not None:
args.eagle_choices = ast.literal_eval(args.eagle_choices)
assert args.num_beams == 1, "Eagle should use num_beams == 1"
runner_kwargs.update(eagle_choices=args.eagle_choices)
runner_kwargs.update(
eagle_posterior_threshold=args.eagle_posterior_threshold)
if args.lookahead_config is not None:
args.lookahead_config = ast.literal_eval(args.lookahead_config)
assert len(
args.lookahead_config
) == 3, "Lookahead needs [max_window_size, max_ngram_size, max_verification_set_size]"
runner_kwargs.update(lookahead_config=args.lookahead_config)
if args.prompt_lookup_config is not None:
assert args.kv_cache_enable_block_reuse, "`--kv_cache_enable_block_reuse` must be specified in speculative decoding."
assert not args.use_py_session, "`--use_py_session` is not supported in Speculative decoding."
assert args.num_beams == 1, "`--num_beams>1` is not supported in Speculative decoding."
prompt_lookup_num_tokens, _, target_device_list = ast.literal_eval(
args.prompt_lookup_config)
args.max_output_len = output_len # Specialization for PLD
runner_kwargs.update(is_orchestrator_mode=True,
device_ids=target_device_list)
if not args.use_py_session:
runner_kwargs.update(
lora_dir=args.lora_dir,
lora_ckpt_source=args.lora_ckpt_source,
max_batch_size=max_batch_size,
max_input_len=test_token_num,
max_output_len=output_len,
max_beam_width=num_beams,
max_attention_window_size=max_attention_window_size,
sink_token_length=sink_token_length,
max_tokens_in_paged_kv_cache=args.max_tokens_in_paged_kv_cache,
kv_cache_enable_block_reuse=args.kv_cache_enable_block_reuse,
kv_cache_free_gpu_memory_fraction=args.
kv_cache_free_gpu_memory_fraction,
enable_chunked_context=args.enable_chunked_context,
multi_block_mode=args.multi_block_mode,
cuda_graph_mode=args.cuda_graph_mode)
runner_kwargs.update(
enable_context_fmha_fp32_acc=args.enable_context_fmha_fp32_acc)
if args.prompt_lookup_config is not None:
# Specialization for PLD since many call of `generate()` is needed
runner_kwargs.update(max_input_len=test_token_num +
prompt_lookup_num_tokens + output_len)
runner = runner_cls.from_dir(**runner_kwargs)
assert not (args.eval_ppl and not (runner.gather_context_logits and runner.gather_generation_logits)), \
"PPL evaluation requires engine built with gather_all_token_logits enabled"
datapoint = dataset[0:1]
output, *_ = eval_trt_llm(datapoint,
eval_task=args.eval_task,
eval_ppl=args.eval_ppl,
add_special_tokens=args.add_special_tokens,
min_input_length=args.min_input_length,
runner=runner)
if runtime_rank == 0 and args.eval_task != "eval_context_ppl":
logger.info(
"---------------------------------------------------------")
logger.info("TensorRT-LLM Generated : ")
logger.info(f" Input : {datapoint[dataset_input_key]}")
logger.info(f"\n Reference : {datapoint[dataset_output_key]}")
logger.info(f"\n Output : {output}")
logger.info(
"---------------------------------------------------------")
ite_count = 0
data_point_idx = 0
total_output_token_count_trt_llm = 0 # only valid for runtime_rank == 0
while (data_point_idx < len(dataset)) and (ite_count < args.max_ite):
if runtime_rank == 0:
logger.debug(
f"run data_point {data_point_idx} ~ {data_point_idx + max_batch_size}"
)
datapoint = dataset[data_point_idx:(data_point_idx +
max_batch_size)]
profiler.start('tensorrt_llm')
output_tensorrt_llm, output_ids_trt_llm, curr_ppls_trt_llm, lengths_info = eval_trt_llm(
datapoint,
eval_task=args.eval_task,
eval_ppl=args.eval_ppl,
add_special_tokens=args.add_special_tokens,
min_input_length=args.min_input_length,
runner=runner)
profiler.stop('tensorrt_llm')
empty_batch = runtime_rank == 0 and len(output_tensorrt_llm) == 0
empty_batch = mpi_broadcast(empty_batch, 0)
if empty_batch:
# No valid samples in the current batch, skip this iteration
data_point_idx += max_batch_size
continue
if runtime_rank == 0:
input_lengths = lengths_info['input_lengths']
seq_lengths = lengths_info['seq_lengths']
output_token_count_trt_llm = sum(
beam_len - input_lengths[batch_idx]
for batch_idx, beam_lens in enumerate(seq_lengths)
for beam_len in beam_lens)
total_output_token_count_trt_llm += output_token_count_trt_llm
for batch_idx, output_beams in enumerate(output_tensorrt_llm):
reference = datapoint[dataset_output_key][batch_idx]
for beam_idx, output_beam in enumerate(output_beams):
metric_tensorrt_llm[beam_idx].add_batch(
predictions=[output_beam], references=[reference])
if args.eval_ppl:
ppls_trt_llm[beam_idx].append(
curr_ppls_trt_llm[batch_idx][beam_idx])
if output_dir is not None:
for i in range(len(output_tensorrt_llm[0])):
for beam_idx in range(num_sequences):
with (output_dir / 'trtllm.out').open('a') as f:
f.write(
f'[{data_point_idx + i}] [Beam {beam_idx}] {output_tensorrt_llm[beam_idx][i]}\n'
)
logger.debug('-' * 100)
logger.debug(f"Input : {datapoint[dataset_input_key]}")
logger.debug(f'TensorRT-LLM Output: {output_tensorrt_llm}')
logger.debug(f"Reference : {datapoint[dataset_output_key]}")
data_point_idx += max_batch_size
ite_count += 1
del runner
if test_hf and runtime_rank == 0:
profiler.start('load HF model')
dtype_alias_mapping = {
'fp32': 'float32',
'fp16': 'float16',
'bf16': 'bfloat16'
}
args.hf_data_type = dtype_alias_mapping.get(args.hf_data_type,
args.hf_data_type)
if 'GLM' in model_name and model_version == 'glm':
auto_model_cls = AutoModelForSeq2SeqLM
elif 'GLM' in model_name and model_version == 'chatglm':
auto_model_cls = AutoModel
else:
auto_model_cls = AutoModelForCausalLM
# TODO: args.hf_device_map_auto is not being correctly set
# remove in future version
if model_name == 'DeepseekV2ForCausalLM':
args.hf_device_map_auto = True
model = auto_model_cls.from_pretrained(
args.hf_model_dir,
trust_remote_code=True,
torch_dtype=str_dtype_to_torch(args.hf_data_type),
device_map='auto' if args.hf_device_map_auto else None)
try:
model.to_bettertransformer()
except Exception as e:
logger.warning(
f'Fail to call model.to_bettertransformer(), exception:\n{str(e)}'
)
if not args.hf_device_map_auto:
model.cuda()
if model_name == 'qwen':
model.generation_config = GenerationConfig.from_pretrained(
args.hf_model_dir, trust_remote_code=True)
profiler.stop('load HF model')
logger.info(
f'Load HF model takes: {profiler.elapsed_time_in_sec("load HF model")} sec'
)
datapoint = dataset[0:1]
output, *_ = eval_hf(datapoint,
eval_task=args.eval_task,
eval_ppl=args.eval_ppl,
add_special_tokens=args.add_special_tokens,
min_input_length=args.min_input_length)
if runtime_rank == 0 and args.eval_task != "eval_context_ppl":
logger.info(
"---------------------------------------------------------")
logger.info("HF Generated : ")
logger.info(f" Input : {datapoint[dataset_input_key]}")
logger.info(f"\n Reference : {datapoint[dataset_output_key]}")
logger.info(f"\n Output : {output}")
logger.info(
"---------------------------------------------------------")
ite_count = 0
data_point_idx = 0
total_output_token_count_hf = 0 # only valid for runtime_rank == 0
while (data_point_idx < len(dataset)) and (ite_count < args.max_ite):
if runtime_rank == 0:
logger.debug(
f"run data_point {data_point_idx} ~ {data_point_idx + max_batch_size}"
)
datapoint = dataset[data_point_idx:(data_point_idx +
max_batch_size)]
profiler.start('hf')
output_hf, token_list, curr_ppls_hf = eval_hf(
datapoint,
eval_task=args.eval_task,
eval_ppl=args.eval_ppl,
add_special_tokens=args.add_special_tokens,
min_input_length=args.min_input_length)
profiler.stop('hf')
# HF model runs on rank 0 only
empty_batch = len(output_hf) == 0
if empty_batch:
# No valid samples in the current batch, skip this iteration
data_point_idx += max_batch_size
continue
if runtime_rank == 0:
seq_lengths = [len(tokens) for tokens in token_list]
total_output_token_count_hf += sum(seq_lengths)
for beam_idx in range(num_sequences):
for batch_idx in range(len(output_hf[beam_idx])):
metric_hf[beam_idx].add_batch(
predictions=[output_hf[beam_idx][batch_idx]],
references=[
datapoint[dataset_output_key][batch_idx]
])
if args.eval_ppl and args.batch_size == 1:
ppls_hf[beam_idx].append(
curr_ppls_hf[batch_idx][beam_idx])
if output_dir is not None:
for i in range(len(output_hf[0])):
for beam_idx in range(num_sequences):
with (output_dir / 'hf.out').open('a') as f:
f.write(
f'[{data_point_idx + i}] [Beam {beam_idx}] {output_hf[beam_idx][i]}\n'
)
logger.debug('-' * 100)
logger.debug(f"Input : {datapoint[dataset_input_key]}")
logger.debug(f'HF Output: {output_hf}')
logger.debug(f"Reference : {datapoint[dataset_output_key]}")
data_point_idx += max_batch_size
ite_count += 1
del model
if runtime_rank == 0 and args.max_ite > 0:
if test_trt_llm:
np.random.seed(0) # rouge score use sampling to compute the score
logger.info(
f'TensorRT-LLM (total latency: {profiler.elapsed_time_in_sec("tensorrt_llm")} sec)'
)
logger.info(
f'TensorRT-LLM (total output tokens: {total_output_token_count_trt_llm})'
)
logger.info(
f'TensorRT-LLM (tokens per second: {total_output_token_count_trt_llm / profiler.elapsed_time_in_sec("tensorrt_llm")})'
)
for beam_idx in range(num_sequences):
logger.info(f"TensorRT-LLM beam {beam_idx} result")
if args.eval_task != "eval_context_ppl":
computed_metrics_tensorrt_llm = metric_tensorrt_llm[
beam_idx].compute()
for key in computed_metrics_tensorrt_llm.keys():
logger.info(
f' {key} : {computed_metrics_tensorrt_llm[key]*100}'
)
if args.check_accuracy and beam_idx == 0:
assert computed_metrics_tensorrt_llm[
'rouge1'] * 100 > args.tensorrt_llm_rouge1_threshold
if args.eval_ppl:
logger.info(
f" Per-token perplexity: {np.mean(ppls_trt_llm[beam_idx])}"
)
if args.check_accuracy and beam_idx == 0:
avg_ppl = np.mean(ppls_trt_llm[beam_idx])
assert avg_ppl < args.tensorrt_llm_ppl_threshold, f"[FAILED] average PPL ({avg_ppl}) is larger than threshold ({args.tensorrt_llm_ppl_threshold})"
if test_hf:
np.random.seed(0) # rouge score use sampling to compute the score
logger.info(
f'Hugging Face (total latency: {profiler.elapsed_time_in_sec("hf")} sec)'
)
logger.info(
f'Hugging Face (total output tokens: {total_output_token_count_hf})'
)
logger.info(
f'Hugging Face (tokens per second: {total_output_token_count_hf / profiler.elapsed_time_in_sec("hf")})'
)
for beam_idx in range(num_sequences):
logger.info(f"HF beam {beam_idx} result")
computed_metrics_hf = metric_hf[beam_idx].compute()
if args.eval_task != "eval_context_ppl":
for key in computed_metrics_hf.keys():
logger.info(f' {key} : {computed_metrics_hf[key]*100}')
if args.eval_ppl and args.batch_size == 1:
logger.info(
f" Per-token perplexity: {np.mean(ppls_hf[beam_idx])}")
if __name__ == '__main__':
# see `add_common_args` for extended list of arguments
parser = argparse.ArgumentParser()
parser.add_argument('--test_hf', action='store_true')
parser.add_argument('--test_trt_llm', action='store_true')
parser.add_argument('--eval_task',
type=str,
default='summarize',
choices=[
'summarize', 'summarize_long', 'code_completion',
'eval_context_ppl'
])
parser.add_argument('--check_accuracy', action='store_true')
parser.add_argument('--tensorrt_llm_rouge1_threshold',
type=float,
default=15.0)
parser.add_argument('--eval_ppl', action='store_true')
parser.add_argument('--tensorrt_llm_ppl_threshold',
type=float,
default=15.0)
parser.add_argument(
'--dataset_dir',
type=str,
default=None,
help="The local directory of the dataset for evaluation; "
"will download the dataset from huggingface hub if not specified.")
parser.add_argument(
'--dataset_cache_dir',
type=str,
default=None,
help="The local cache directory for dataset; "
"will use `~/.cache/huggingface/datasets` if not specified.")
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--max_ite', type=int, default=20)
parser.add_argument('--output_len', type=int, default=100)
parser.add_argument('--max_input_length', type=int, default=923)
parser.add_argument(
'--min_input_length',
type=int,
default=0,
help='skip the sentences which are shorter than min_input_length.')
parser.add_argument(
'--output_dir',
type=str,
default=None,
help="Directory where to save output sentences. 'trtllm.out' for "
"TensorRT-LLM outputs, and 'hf.out' for HF outputs. If None, do not "
"save outputs.")
parser.add_argument(
'--rouge_dir',
default=None,
type=str,
help=
"evaluate.load('rouge') will attempt to pull rouge package from HF. Use cached rouge can avoid network outage of host or HF."
)
parser = add_common_args(parser)
args = parser.parse_args()
main(args)