-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain_2d.py
195 lines (162 loc) · 6.88 KB
/
train_2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from __future__ import print_function
import os
import sys
import time
import math
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import random
from utils import adjust_learning_rate, AverageMeter
from models import PCRLv2
try:
from apex import amp, optimizers
except ImportError:
pass
# from koila import LazyTensor, lazy
def Normalize(x):
norm_x = x.pow(2).sum(1, keepdim=True).pow(1. / 2.)
x = x.div(norm_x)
return x
def moment_update(model, model_ema, m):
""" model_ema = m * model_ema + (1 - m) model """
for p1, p2 in zip(model.parameters(), model_ema.parameters()):
p2.data.mul_(m).add_(1 - m, p1.detach().data)
def get_shuffle_ids(bsz):
"""generate shuffle ids for ShuffleBN"""
forward_inds = torch.randperm(bsz).long().cuda()
backward_inds = torch.zeros(bsz).long().cuda()
value = torch.arange(bsz).long().cuda()
backward_inds.index_copy_(0, forward_inds, value)
return forward_inds, backward_inds
def mixup_data(x, alpha=1.0, index=None, lam=None, ):
'''Returns mixed inputs, pairs of targets, and lambda'''
if lam is None:
lam = np.random.beta(alpha, alpha)
else:
lam = lam
lam = max(lam, 1 - lam)
batch_size = x.size()[0]
if index is None:
index = torch.randperm(batch_size).cuda()
else:
index = index
mixed_x = lam * x + (1 - lam) * x[index, :]
return mixed_x, lam, index
def train_pcrlv2(args, data_loader, out_channel=3):
train_loader = data_loader['train']
# create model and optimizer
model = PCRLv2()
model = model.cuda()
optimizer = torch.optim.SGD(model.parameters(),
lr=args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
if args.amp:
model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
model = nn.DataParallel(model)
criterion = nn.MSELoss().cuda()
cosine = nn.CosineSimilarity().cuda()
cudnn.benchmark = True
loss_list = []
mg_loss_list = []
for epoch in range(0, args.epochs + 1):
adjust_learning_rate(epoch, args, optimizer)
print("==> training...")
time1 = time.time()
loss, mg_loss, prob = train_pcrlv2_inner(args, epoch, train_loader, model, optimizer, criterion, cosine)
loss_list.append(loss)
mg_loss_list.append(mg_loss)
time2 = time.time()
print('epoch {}, total time {:.2f}'.format(epoch, time2 - time1))
# save model
if epoch % 100 == 0 or epoch == 240:
# saving the model
print('==> Saving...')
state = {'opt': args, 'state_dict': model.module.model.encoder.state_dict(),
'optimizer': optimizer.state_dict(), 'epoch': epoch}
save_file = os.path.join(args.output,
args.model + "_" + args.n + '_' + args.phase + '_' + str(
args.ratio) + '_' + str(epoch) + '.pt')
torch.save(state, save_file)
# help release GPU memory
del state
torch.cuda.empty_cache()
def cos_loss(cosine, output1, output2):
index = random.randint(0, len(output1) - 1)
sample1 = output1[index]
sample2 = output2[index]
loss = -(cosine(sample1[1], sample2[0].detach()).mean() + cosine(sample2[1],
sample1[0].detach()).mean()) * 0.5
return loss, index
def train_pcrlv2_inner(args, epoch, train_loader, model, optimizer, criterion, cosine):
"""
one epoch training for instance discrimination
"""
model.train()
batch_time = AverageMeter()
data_time = AverageMeter()
loss_meter = AverageMeter()
mg_loss_meter = AverageMeter()
prob_meter = AverageMeter()
all_loss_meter = AverageMeter()
end = time.time()
for idx, (input1, input2, gt, gt2, local_views) in enumerate(train_loader):
data_time.update(time.time() - end)
bsz = input1.size(0)
x1 = input1.float().cuda()
x2 = input2.float().cuda()
gt = gt.float().cuda()
decoder_outputs1, mask1, middle_masks1 = model(x1)
decoder_outputs2, mask2, _ = model(x2)
# print(len(local_views), local_views[0].shape)
loss2, index2 = cos_loss(cosine, decoder_outputs1, decoder_outputs2)
local_loss = 0.0
local_input = torch.cat(local_views, dim=0)# 6 * bsz, 3, 96, 96
local_views_outputs, _, _ = model(local_input, local=True)# 4 * 2 * [6 * bsz, 3, 96, 96]
# print(len(local_views_outputs),local_views_outputs[0].shape)
local_views_outputs = [torch.stack(t) for t in local_views_outputs]
# print(local_views_outputs[0].shape)
for i in range(len(local_views)):
# local_views_outputs, _, _ = model(local_views[i], local=True)
local_views_outputs_tmp = [t[:, bsz * i: bsz * (i + 1)] for t in local_views_outputs]
loss_local_1, _ = cos_loss(cosine, decoder_outputs1, local_views_outputs_tmp)
loss_local_2, _ = cos_loss(cosine, decoder_outputs2, local_views_outputs_tmp)
local_loss += loss_local_1
local_loss += loss_local_2
local_loss = local_loss / (2 * len(local_views))
loss1 = criterion(mask1, gt)
beta = 0.5 * (1. + math.cos(math.pi * epoch / 240))
loss4 = beta * criterion(middle_masks1[index2], gt)
loss = loss1 + loss2 + local_loss + loss4
# ===================backward=====================
optimizer.zero_grad()
if args.amp:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
# clip_value = 10
# torch.nn.utils.clip_grad_norm_(model.parameters(), clip_value)
optimizer.step()
# ===================meters=====================
mg_loss_meter.update(loss1.item(), bsz)
loss_meter.update(loss2.item(), bsz)
prob_meter.update(local_loss, bsz)
all_loss_meter.update(loss.item(), bsz)
torch.cuda.synchronize()
batch_time.update(time.time() - end)
end = time.time()
# print info
if (idx + 1) % 10 == 0:
print('Train: [{0}][{1}/{2}]\t'
'BT {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'DT {data_time.val:.3f} ({data_time.avg:.3f})\t'
'cos_loss {c2l_loss.val:.3f} ({c2l_loss.avg:.3f})\t'
'mg loss {mg_loss.val:.3f} ({mg_loss.avg:.3f})\t'
'local loss {prob.val:.3f} ({prob.avg:.3f})'.format(
epoch, idx + 1, len(train_loader), batch_time=batch_time,
data_time=data_time, c2l_loss=loss_meter, mg_loss=mg_loss_meter, prob=prob_meter))
sys.stdout.flush()
return loss_meter.avg, mg_loss_meter.avg, prob_meter.avg