-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_inference.py
176 lines (141 loc) · 5.44 KB
/
test_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import configparser
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
import gzip
import json
import os
import subprocess
import time
from multiprocessing import Pool
import shutil
import numpy as np
import pandas as pd
import pytorch_lightning as pl
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
# Change relative imports
from data.equifold_process_input import data_process
from model_utils.models import NN
from openfold_light.residue_constants import restype_3to1
from utils.refine import refine
from utils.sequence_checks import number_sequences
from utils.utils import compute_prediction_error, to_atom37
from utils.utils_data import collate_fn, x_to_pdb
import pdb
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def aggregate_predictions(predictions):
aggregated = {
"predictions": [],
"additional_info": []
}
for pred in predictions:
# Collect and concatenate values from all predictions
aggregated["predictions"].append(pred["prediction"].cpu())
aggregated["additional_info"].extend(pred["additional_info"])
# Further aggregation if needed (e.g., stacking tensors)
aggregated["predictions"] = torch.cat(aggregated["predictions"], dim=0)
return aggregated
if __name__ == "__main__":
# Parse command line arguments
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument("-c", "--config", default="./configs/config.ini", help="Location to your global config file")
args = vars(parser.parse_args())
CONFIG = configparser.ConfigParser(interpolation=configparser.ExtendedInterpolation())
print('CONFIG file being used: ', args["config"])
CONFIG.read(args["config"])
t_0 = time.time()
# fined-tuned model
model_path = CONFIG["inference"]["model_ckpt"]
config_path = CONFIG["inference"]["config_path"]
with open(config_path, "r") as f:
config = json.load(f)
model = NN(**config)
checkpoint = torch.load(model_path, map_location="cpu")
try:
model.load_state_dict(checkpoint["state_dict"])
except:
model.load_state_dict(checkpoint)
model.eval()
print("Finish loading\n")
# load data
df = pd.read_csv(CONFIG["inference"]["sequence_path"])
uids = df["uid"].tolist()
if CONFIG["inference"]["model_type"] == "ab":
seqs1 = df["heavy"].tolist()
seqs2 = df["light"].tolist()
else:
seqs1 = df["seq"].tolist()
seqs2 = [None] * len(seqs1)
# Add chain_id into data object
chain_id = df["chain_id"].tolist()
# prepare data structures using multiproc
jobs = list(zip(uids, seqs1, seqs2, chain_id))
print(f"Total number of sequences: {len(jobs)}")
if CONFIG["inference"]["ncpu"] != "":
ncpu = CONFIG.getint("inference", "ncpu")
else:
ncpu = os.cpu_count()
def init_worker(config):
global processor
processor = data_process(config)
def process_one_worker(job):
# Access the worker-local processor
return processor.process_one(job)
with Pool(ncpu, initializer=init_worker, initargs=(CONFIG,)) as p:
dataset = list(tqdm(p.imap_unordered(process_one_worker, jobs), total=len(jobs)))
# run (multi-gpu) inference and save
loader = DataLoader(
dataset,
batch_size=32,
drop_last=False,
shuffle=False,
num_workers=4,
collate_fn=collate_fn,
pin_memory=True,
)
# (TODO) subject to change
# GPUs = 1
GPUs = torch.cuda.device_count()
print("Trainer is using: ", GPUs, "GPUs.")
predicter = pl.Trainer(
strategy="ddp",
accelerator="gpu",
devices=GPUs
)
t_1 = time.time()
# os.makedirs(CONFIG["inference"]["output_dir"], exist_ok=True)
# with torch.no_grad():
# pl.seed_everything(0)
# preds = predicter.predict(model, dataloaders=loader)
# pdb.set_trace()
from torch.distributed import is_initialized
# Function to gather predictions across all GPUs
def gather_predictions(preds):
if is_initialized(): # Check if running in a distributed setting
import torch.distributed as dist
rank = dist.get_rank()
world_size = dist.get_world_size()
# Gather all predictions into a list
gathered_preds = [None] * world_size
dist.all_gather_object(gathered_preds, preds)
# Only rank 0 consolidates the results
if rank == 0:
consolidated_preds = []
for pred in gathered_preds:
consolidated_preds.extend(pred)
return consolidated_preds
else:
return None
else:
return preds # No distribution, return as is
preds = predicter.predict(model, dataloaders=loader)
# Gather predictions from all GPUs
consolidated_preds = gather_predictions(preds)
if consolidated_preds is not None: # Only save on rank 0
print("Size of the prediction: ", len(consolidated_preds))
output_path = os.path.join(CONFIG["inference"]["output_dir"], "predictions.pt")
torch.save(consolidated_preds, output_path)
t_2 = time.time()
print(f"Data processing done in {round(t_1-t_0)}s.")
print(f"Inference done in {round(t_2-t_1)}s.")
print(f"Average inference time is {round(t_2-t_1)/len(jobs)}s.")