-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathreaders.py
48 lines (36 loc) · 1.58 KB
/
readers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import os
import pandas
import math
import functions
import numpy as np
def file_reader(path, participant, trial, filename):
# read data file
file = [i for i in os.listdir(path) if os.path.isfile(os.path.join(path, i)) and \
filename in i]
csvdata = pandas.read_csv(path + file[0], delimiter=',')
# remove last row (can be partially logged) and replace nan values
csvdata.drop(csvdata.tail(1).index,inplace=True)
csvdata.dropna(subset=["raw_timestamp"], inplace=True)
if 'relative_to_video_first_frame_timestamp' in csvdata.columns:
csvdata.dropna(subset=["relative_to_video_first_frame_timestamp"], inplace=True)
csvdata = csvdata.fillna(0)
# interpolate missing gaps in the data that represent Blinks (for Varjo Base recordings)
patched_data = functions.fill_blink_gaps(csvdata)
return patched_data
def gaze_arff(csvdata):
# Raw Gaze data
s = np.array(csvdata['status'])
x = np.array(csvdata['gaze_forward_x'])
y = np.array(csvdata['gaze_forward_y'])
# get time stamps, checks wether or not a video time stamp is available
if 'relative_to_video_first_frame_timestamp' in csvdata.columns:
t = np.array(csvdata['relative_to_video_first_frame_timestamp'] / 10 ** 6)
else:
t = csvdata['raw_timestamp'] / 10 ** 6
t = np.array(t - t[0])
# convert to angles in deg
Tx = (180 / math.pi) * np.arcsin(x)
Ty = (180 / math.pi) * np.arcsin(y)
#convert data tor arff object for processing
gaze_points = functions.load_CSV_as_arff_object(Tx, Ty, t, s, '')
return gaze_points