forked from avinashpaliwal/Super-SloMo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
361 lines (287 loc) · 10.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import torch
import torchvision
import torchvision.transforms as transforms
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
class down(nn.Module):
"""
A class for creating neural network blocks containing layers:
Average Pooling --> Convlution + Leaky ReLU --> Convolution + Leaky ReLU
This is used in the UNet Class to create a UNet like NN architecture.
...
Methods
-------
forward(x)
Returns output tensor after passing input `x` to the neural network
block.
"""
def __init__(self, inChannels, outChannels, filterSize):
"""
Parameters
----------
inChannels : int
number of input channels for the first convolutional layer.
outChannels : int
number of output channels for the first convolutional layer.
This is also used as input and output channels for the
second convolutional layer.
filterSize : int
filter size for the convolution filter. input N would create
a N x N filter.
"""
super(down, self).__init__()
# Initialize convolutional layers.
self.conv1 = nn.Conv2d(inChannels, outChannels, filterSize, stride=1, padding=int((filterSize - 1) / 2))
self.conv2 = nn.Conv2d(outChannels, outChannels, filterSize, stride=1, padding=int((filterSize - 1) / 2))
def forward(self, x):
"""
Returns output tensor after passing input `x` to the neural network
block.
Parameters
----------
x : tensor
input to the NN block.
Returns
-------
tensor
output of the NN block.
"""
# Average pooling with kernel size 2 (2 x 2).
x = F.avg_pool2d(x, 2)
# Convolution + Leaky ReLU
x = F.leaky_relu(self.conv1(x), negative_slope = 0.1)
# Convolution + Leaky ReLU
x = F.leaky_relu(self.conv2(x), negative_slope = 0.1)
return x
class up(nn.Module):
"""
A class for creating neural network blocks containing layers:
Bilinear interpolation --> Convlution + Leaky ReLU --> Convolution + Leaky ReLU
This is used in the UNet Class to create a UNet like NN architecture.
...
Methods
-------
forward(x, skpCn)
Returns output tensor after passing input `x` to the neural network
block.
"""
def __init__(self, inChannels, outChannels):
"""
Parameters
----------
inChannels : int
number of input channels for the first convolutional layer.
outChannels : int
number of output channels for the first convolutional layer.
This is also used for setting input and output channels for
the second convolutional layer.
"""
super(up, self).__init__()
# Initialize convolutional layers.
self.conv1 = nn.Conv2d(inChannels, outChannels, 3, stride=1, padding=1)
# (2 * outChannels) is used for accommodating skip connection.
self.conv2 = nn.Conv2d(2 * outChannels, outChannels, 3, stride=1, padding=1)
def forward(self, x, skpCn):
"""
Returns output tensor after passing input `x` to the neural network
block.
Parameters
----------
x : tensor
input to the NN block.
skpCn : tensor
skip connection input to the NN block.
Returns
-------
tensor
output of the NN block.
"""
# Bilinear interpolation with scaling 2.
x = F.interpolate(x, scale_factor=2, mode='bilinear')
# Convolution + Leaky ReLU
x = F.leaky_relu(self.conv1(x), negative_slope = 0.1)
# Convolution + Leaky ReLU on (`x`, `skpCn`)
x = F.leaky_relu(self.conv2(torch.cat((x, skpCn), 1)), negative_slope = 0.1)
return x
class UNet(nn.Module):
"""
A class for creating UNet like architecture as specified by the
Super SloMo paper.
...
Methods
-------
forward(x)
Returns output tensor after passing input `x` to the neural network
block.
"""
def __init__(self, inChannels, outChannels):
"""
Parameters
----------
inChannels : int
number of input channels for the UNet.
outChannels : int
number of output channels for the UNet.
"""
super(UNet, self).__init__()
# Initialize neural network blocks.
self.conv1 = nn.Conv2d(inChannels, 32, 7, stride=1, padding=3)
self.conv2 = nn.Conv2d(32, 32, 7, stride=1, padding=3)
self.down1 = down(32, 64, 5)
self.down2 = down(64, 128, 3)
self.down3 = down(128, 256, 3)
self.down4 = down(256, 512, 3)
self.down5 = down(512, 512, 3)
self.up1 = up(512, 512)
self.up2 = up(512, 256)
self.up3 = up(256, 128)
self.up4 = up(128, 64)
self.up5 = up(64, 32)
self.conv3 = nn.Conv2d(32, outChannels, 3, stride=1, padding=1)
def forward(self, x):
"""
Returns output tensor after passing input `x` to the neural network.
Parameters
----------
x : tensor
input to the UNet.
Returns
-------
tensor
output of the UNet.
"""
x = F.leaky_relu(self.conv1(x), negative_slope = 0.1)
s1 = F.leaky_relu(self.conv2(x), negative_slope = 0.1)
s2 = self.down1(s1)
s3 = self.down2(s2)
s4 = self.down3(s3)
s5 = self.down4(s4)
x = self.down5(s5)
x = self.up1(x, s5)
x = self.up2(x, s4)
x = self.up3(x, s3)
x = self.up4(x, s2)
x = self.up5(x, s1)
x = F.leaky_relu(self.conv3(x), negative_slope = 0.1)
return x
class backWarp(nn.Module):
"""
A class for creating a backwarping object.
This is used for backwarping to an image:
Given optical flow from frame I0 to I1 --> F_0_1 and frame I1,
it generates I0 <-- backwarp(F_0_1, I1).
...
Methods
-------
forward(x)
Returns output tensor after passing input `img` and `flow` to the backwarping
block.
"""
def __init__(self, W, H, device):
"""
Parameters
----------
W : int
width of the image.
H : int
height of the image.
device : device
computation device (cpu/cuda).
"""
super(backWarp, self).__init__()
# create a grid
gridX, gridY = np.meshgrid(np.arange(W), np.arange(H))
self.W = W
self.H = H
self.gridX = torch.tensor(gridX, requires_grad=False, device=device)
self.gridY = torch.tensor(gridY, requires_grad=False, device=device)
def forward(self, img, flow):
"""
Returns output tensor after passing input `img` and `flow` to the backwarping
block.
I0 = backwarp(I1, F_0_1)
Parameters
----------
img : tensor
frame I1.
flow : tensor
optical flow from I0 and I1: F_0_1.
Returns
-------
tensor
frame I0.
"""
# Extract horizontal and vertical flows.
u = flow[:, 0, :, :]
v = flow[:, 1, :, :]
x = self.gridX.unsqueeze(0).expand_as(u).float() + u
y = self.gridY.unsqueeze(0).expand_as(v).float() + v
# range -1 to 1
x = 2*(x/self.W - 0.5)
y = 2*(y/self.H - 0.5)
# stacking X and Y
grid = torch.stack((x,y), dim=3)
# Sample pixels using bilinear interpolation.
imgOut = torch.nn.functional.grid_sample(img, grid)
return imgOut
# Creating an array of `t` values for the 7 intermediate frames between
# reference frames I0 and I1.
t = np.linspace(0.125, 0.875, 7)
def getFlowCoeff (indices, device):
"""
Gets flow coefficients used for calculating intermediate optical
flows from optical flows between I0 and I1: F_0_1 and F_1_0.
F_t_0 = C00 x F_0_1 + C01 x F_1_0
F_t_1 = C10 x F_0_1 + C11 x F_1_0
where,
C00 = -(1 - t) x t
C01 = t x t
C10 = (1 - t) x (1 - t)
C11 = -t x (1 - t)
Parameters
----------
indices : tensor
indices corresponding to the intermediate frame positions
of all samples in the batch.
device : device
computation device (cpu/cuda).
Returns
-------
tensor
coefficients C00, C01, C10, C11.
"""
# Convert indices tensor to numpy array
ind = indices.detach().numpy()
C11 = C00 = - (1 - (t[ind])) * (t[ind])
C01 = (t[ind]) * (t[ind])
C10 = (1 - (t[ind])) * (1 - (t[ind]))
return torch.Tensor(C00)[None, None, None, :].permute(3, 0, 1, 2).to(device), torch.Tensor(C01)[None, None, None, :].permute(3, 0, 1, 2).to(device), torch.Tensor(C10)[None, None, None, :].permute(3, 0, 1, 2).to(device), torch.Tensor(C11)[None, None, None, :].permute(3, 0, 1, 2).to(device)
def getWarpCoeff (indices, device):
"""
Gets coefficients used for calculating final intermediate
frame `It_gen` from backwarped images using flows F_t_0 and F_t_1.
It_gen = (C0 x V_t_0 x g_I_0_F_t_0 + C1 x V_t_1 x g_I_1_F_t_1) / (C0 x V_t_0 + C1 x V_t_1)
where,
C0 = 1 - t
C1 = t
V_t_0, V_t_1 --> visibility maps
g_I_0_F_t_0, g_I_1_F_t_1 --> backwarped intermediate frames
Parameters
----------
indices : tensor
indices corresponding to the intermediate frame positions
of all samples in the batch.
device : device
computation device (cpu/cuda).
Returns
-------
tensor
coefficients C0 and C1.
"""
# Convert indices tensor to numpy array
ind = indices.detach().numpy()
C0 = 1 - t[ind]
C1 = t[ind]
return torch.Tensor(C0)[None, None, None, :].permute(3, 0, 1, 2).to(device), torch.Tensor(C1)[None, None, None, :].permute(3, 0, 1, 2).to(device)