-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
22 lines (16 loc) · 803 Bytes
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import streamlit as st
import pandas as pd
import pickle
games_df = pd.DataFrame(pickle.load(open("./artifacts/games_dict.pkl", "rb")))
similarity = pickle.load(open("./artifacts/similarity.pkl", "rb"))
def recommend(game):
game_index = games_df[games_df["name"] == game].index[0]
recommendations = sorted(list(enumerate(similarity[game_index])), key=lambda x: x[1], reverse=True)[1:11]
recommendations = list(map(lambda x: (games_df.iloc[x[0], :][1], games_df.iloc[x[0], :][0]), recommendations))
return recommendations
games_list = games_df["name"].values
st.title("Game Recommender System")
selected_game = st.selectbox("Select Game", games_list)
if st.button("Recommend"):
for game in recommend(selected_game):
st.subheader(f"{game[0]} [:video_game:]({game[1]})")