-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathintraproc_celeba.py
674 lines (544 loc) · 28.4 KB
/
intraproc_celeba.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
"""
post_hoc_celeba.py
Debias image models trained on celeba
"""
import argparse
import copy
import json
import logging
import math
from pathlib import Path
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import yaml
from aif360.algorithms.postprocessing import (CalibratedEqOddsPostprocessing,
EqOddsPostprocessing,
RejectOptionClassification)
from aif360.datasets import StandardDataset
from sklearn.metrics import roc_auc_score
from skopt import gbrt_minimize
from skopt.space import Real
from torchvision import models, transforms
from celeba_race import CelebRace, unambiguous
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print('device:', device)
logger = logging.getLogger("Debiasing CelebA")
log_stream_handler = logging.StreamHandler()
log_file_handler = logging.FileHandler('posthoc_celeba.log')
logger.addHandler(log_stream_handler)
logger.addHandler(log_file_handler)
logger.setLevel(logging.INFO)
log_stream_handler.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s'))
log_file_handler.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s'))
logger.propagate = False
descriptions = ['5_o_Clock_Shadow', 'Arched_Eyebrows', 'Attractive',
'Bags_Under_Eyes', 'Bald', 'Bangs', 'Big_Lips', 'Big_Nose',
'Black_Hair', 'Blond_Hair', 'Blurry', 'Brown_Hair',
'Bushy_Eyebrows', 'Chubby', 'Double_Chin', 'Eyeglasses',
'Goatee', 'Gray_Hair', 'Heavy_Makeup', 'High_Cheekbones',
'Male', 'Mouth_Slightly_Open', 'Mustache', 'Narrow_Eyes',
'No_Beard', 'Oval_Face', 'Pale_Skin', 'Pointy_Nose',
'Receding_Hairline', 'Rosy_Cheeks', 'Sideburns', 'Smiling',
'Straight_Hair', 'Wavy_Hair', 'Wearing_Earrings', 'Wearing_Hat',
'Wearing_Lipstick', 'Wearing_Necklace', 'Wearing_Necktie',
'Young', 'Fitz_Light', 'Fitz_Dark', 'Index', 'Female']
def load_celeba(input_size=224, num_workers=2, trainsize=100, testsize=100, batch_size=4, transform_type='normalize'):
"""Load CelebA dataset"""
if transform_type == 'normalize':
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
elif transform_type == 'augmentation':
transform = transforms.Compose([
transforms.RandomResizedCrop(input_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
else:
transform = transforms.ToTensor()
trainset = CelebRace(root='./data', download=True, split='train', transform=transform)
testset = CelebRace(root='./data', download=True, split='test', transform=transform)
# return only the images which were predicted fitz_light or fitz_dark by >70%.
trainset = unambiguous(trainset, split='train')
testset = unambiguous(testset, split='test')
if trainsize >= 0:
# cut down the training set
trainset, _ = torch.utils.data.random_split(trainset, [trainsize, len(trainset) - trainsize])
trainset, valset = torch.utils.data.random_split(trainset, [int(len(trainset)*0.6), int(len(trainset)*0.4)])
if testsize >= 0:
testset, _ = torch.utils.data.random_split(testset, [testsize, len(testset) - testsize])
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=False, num_workers=num_workers)
valloader = torch.utils.data.DataLoader(valset, batch_size=batch_size, shuffle=False, num_workers=num_workers)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=num_workers)
return trainset, valset, testset, trainloader, valloader, testloader
def get_resnet_model():
"""Get Pretrained resnet model"""
resnet18 = models.resnet18(pretrained=True)
num_ftrs = resnet18.fc.in_features
resnet18.fc = nn.Linear(num_ftrs, 2)
resnet18.to(device)
return resnet18
def train_model(model, trainloader, valloader, criterion, optimizer, checkpoint, protected_index, prediction_index, epochs=2, start_epoch=0):
"""Fine-tune resnet model on dataset"""
best_acc, best_model, patience = 0., None, 10
for epoch in range(start_epoch, epochs):
logger.info('Epoch {}/{}'.format(epoch+1, epochs))
logger.info('-' * 10)
model.train()
running_loss = 0.
running_corrects = 0
for index, (inputs, labels) in enumerate(trainloader):
inputs, labels = inputs.to(device), (labels[:, prediction_index]).float().to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs[:, 0], labels)
preds = torch.sigmoid(outputs[:, 0]) > 0.5
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if (index-1) % 101 == 0:
num_examples = index * inputs.size(0)
logger.info(f"({index}/{len(trainloader)}) Loss: {running_loss / num_examples:.4f} Acc: {running_corrects.float() / num_examples:.4f}")
acc, _ = val_model(model, valloader, get_best_balanced_accuracy, protected_index, prediction_index)
if acc < best_acc:
patience -= 1
if patience <= 0:
model.load_state_dict(best_model)
else:
best_acc = acc
best_model = model.state_dict()
patience = 10
logger.info(f"Best Accuracy on Validation set: {best_acc}")
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}, checkpoint)
if patience <= 0:
break
def val_model(model, loader, criterion, protected_index, prediction_index):
"""Validate model on loader with criterion function"""
y_true, y_pred, y_prot = [], [], []
model.eval()
with torch.no_grad():
for inputs, full_labels in loader:
inputs, labels, protected = inputs.to(device), full_labels[:, prediction_index].float().to(device), full_labels[:, protected_index].float().to(device)
y_true.append(labels)
y_prot.append(protected)
y_pred.append(torch.sigmoid(model(inputs)[:, 0]))
y_true, y_pred, y_prot = torch.cat(y_true), torch.cat(y_pred), torch.cat(y_prot)
return criterion(y_true, y_pred, y_prot)
def compute_priors(data, protected_index, prediction_index):
"""Compute priors on the data"""
counts = np.zeros((2, 2))
for batch in list(data):
_, labels = batch[0], batch[1]
for label in labels:
prot_value = label[protected_index]
pred_value = label[prediction_index]
counts[prot_value][pred_value] += 1
total = sum(sum(counts))
prot_rate = np.round(counts[1][1]/sum(counts[1]), 4)
unprot_rate = np.round(counts[0][1]/sum(counts[0]), 4)
logger.info(f'Prob. protected class: {np.round(sum(counts[1])/total, 4)}')
logger.info(f'Prob. positive outcome: {np.round(sum(counts[:, 1])/total, 4)}')
logger.info(f'Prob. positive outcome given protected class {prot_rate}')
logger.info(f'Prob. positive outcome given unprotected class {unprot_rate}')
def compute_bias(y_pred, y_true, prot, metric):
"""Compute bias on the dataset"""
def zero_if_nan(data):
"""Zero if there is a nan"""
return 0. if torch.isnan(data) else data
gtpr_prot = zero_if_nan(y_pred[prot * y_true == 1].mean())
gfpr_prot = zero_if_nan(y_pred[prot * (1-y_true) == 1].mean())
mean_prot = zero_if_nan(y_pred[prot == 1].mean())
gtpr_unprot = zero_if_nan(y_pred[(1-prot) * y_true == 1].mean())
gfpr_unprot = zero_if_nan(y_pred[(1-prot) * (1-y_true) == 1].mean())
mean_unprot = zero_if_nan(y_pred[(1-prot) == 1].mean())
if metric == "spd":
return mean_prot - mean_unprot
elif metric == "aod":
return 0.5 * ((gfpr_prot - gfpr_unprot) + (gtpr_prot - gtpr_unprot))
elif metric == "eod":
return gtpr_prot - gtpr_unprot
def get_best_accuracy(y_true, y_pred, _):
"""Select threshold that maximizes accuracy"""
threshs = torch.linspace(0, 1, 1001)
best_perf, best_thresh = 0., 0.
for thresh in threshs:
perf = (torch.mean((y_pred > thresh)[y_true.type(torch.bool)].type(torch.float32)))
if perf > best_perf:
best_perf, best_thresh = perf, thresh
return best_perf, best_thresh
def get_best_balanced_accuracy(y_true, y_pred, _):
"""Select threshold that maximizes accuracy"""
threshs = torch.linspace(0, 1, 1001)
best_perf, best_thresh = 0., 0.
for thresh in threshs:
perf = (torch.mean((y_pred > thresh)[y_true.type(torch.bool)].type(torch.float32)) + torch.mean((y_pred <= thresh)[~y_true.type(torch.bool)].type(torch.float32))) / 2
if perf > best_perf:
best_perf, best_thresh = perf, thresh
return best_perf, best_thresh
def compute_objective(performance, bias, epsilon=0.05, margin=0.01):
if abs(bias) <= (epsilon-margin):
return performance
else:
return 0.0
def get_objective_with_best_accuracy(y_true, y_pred, y_prot):
"""Get objective for best accuracy threshold"""
global yaml_config
rocauc_score = roc_auc_score(y_true.cpu(), y_pred.cpu())
perf, best_thresh = get_best_balanced_accuracy(y_true, y_pred, y_prot)
bias = compute_bias((y_pred > best_thresh).float().cpu(), y_true.float().cpu(), y_prot.float().cpu(), yaml_config['metric'])
obj = compute_objective(perf, bias)
return rocauc_score, perf, bias, obj
def get_best_objective(y_true, y_pred, y_prot):
"""Find the threshold for the best objective"""
global yaml_config
num_samples = 5
threshs = torch.linspace(0, 1, 501)
best_obj, best_thresh = -math.inf, 0.
for thresh in threshs:
indices = np.random.choice(np.arange(y_pred.size()[0]), num_samples*y_pred.size()[0], replace=True).reshape(num_samples, y_pred.size()[0])
objs = []
for index in indices:
y_pred_tmp = y_pred[index]
y_true_tmp = y_true[index]
y_prot_tmp = y_prot[index]
perf = (torch.mean((y_pred_tmp > thresh)[y_true_tmp.type(torch.bool)].type(torch.float32)) + torch.mean((y_pred_tmp <= thresh)[~y_true_tmp.type(torch.bool)].type(torch.float32))) / 2
bias = compute_bias((y_pred_tmp > thresh).float().cpu(), y_true_tmp.float().cpu(), y_prot_tmp.float().cpu(), yaml_config['metric'])
objs.append(compute_objective(perf, bias))
obj = float(torch.tensor(objs).mean())
if obj > best_obj:
best_obj, best_thresh = obj, thresh
return best_obj, best_thresh
def get_objective_results(best_thresh, margin=0.01):
"""Get the objective results with the best_threshold"""
def _get_results(y_true, y_pred, y_prot):
"""Inner function to be returned"""
global yaml_config
rocauc_score = roc_auc_score(y_true.cpu(), y_pred.cpu())
perf = (torch.mean((y_pred > best_thresh)[y_true.type(torch.bool)].type(torch.float32)) + torch.mean((y_pred <= best_thresh)[~y_true.type(torch.bool)].type(torch.float32))) / 2
bias = compute_bias((y_pred > best_thresh).float().cpu(), y_true.float().cpu(), y_prot.float().cpu(), yaml_config['metric'])
obj = compute_objective(perf, bias, margin=margin)
return rocauc_score, perf, bias, obj
return _get_results
def print_objective_results(dataloader, model, thresh, protected_index, prediction_index, margin=0.00):
global yaml_config
rocauc_score, acc, bias, obj = val_model(model, dataloader, get_objective_results(thresh, margin), protected_index, prediction_index)
logger.info(f'roc auc {rocauc_score}')
logger.info(f'accuracy with best thresh {acc}')
logger.info(f'{yaml_config["metric"]} {float(bias)}')
logger.info(f'objective {float(obj)}')
result_dict = {
'roc_auc': float(rocauc_score),
'accuracy': float(acc),
'bias': float(bias),
'objective': float(obj)
}
return result_dict
class Critic(nn.Module):
"""Critic class for adversarial debiasing method"""
def __init__(self, sizein, num_deep=3, hid=32):
super().__init__()
self.fc0 = nn.Linear(sizein, hid)
self.fcs = nn.ModuleList([nn.Linear(hid, hid) for _ in range(num_deep)])
self.dropout = nn.Dropout(0.2)
self.out = nn.Linear(hid, 1)
def forward(self, t):
t = t.reshape(1, -1)
t = self.fc0(t)
for fully_connected in self.fcs:
t = F.relu(fully_connected(t))
t = self.dropout(t)
return self.out(t)
def main(config):
"""Main Function"""
seed = np.random.randint(0, high=10000)
if 'seed' in config:
seed = config['seed']
torch.manual_seed(seed)
np.random.seed(seed)
protected_index = descriptions.index(config['protected_attr'])
prediction_index = descriptions.index(config['prediction_attr'])
valid_results, test_results = {}, {}
_, _, _, trainloader, valloader, testloader = load_celeba(
trainsize=config['trainsize'],
testsize=config['testsize'],
num_workers=config['num_workers'],
batch_size=config['batch_size']
)
if config['print_priors']:
logger.info('train priors')
compute_priors(trainloader, protected_index, prediction_index)
logger.info('val priors')
compute_priors(valloader, protected_index, prediction_index)
logger.info('test priors')
compute_priors(testloader, protected_index, prediction_index)
net = get_resnet_model()
criterion = nn.BCEWithLogitsLoss()
if config['optimizer'] == 'sgd':
optimizer = optim.SGD(net.parameters(), lr=config['lr'])
else:
optimizer = optim.Adam(net.parameters(), lr=config['lr'])
checkpoint_file = Path('seed'+str(seed)+config['optimizer']+str(config['lr'])+'_pro_'+config['protected_attr']+'_pre_'+config['prediction_attr']+'_'+config['checkpoint'])
start_epoch = 0
if checkpoint_file.is_file() and (not config['retrain']):
checkpoint = torch.load(checkpoint_file, map_location=device)
logger.info('loaded from %s', checkpoint_file)
net.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
start_epoch = checkpoint['epoch']
else:
train_model(
net,
trainloader,
valloader,
criterion,
optimizer,
str(checkpoint_file),
protected_index,
prediction_index,
epochs=config['epochs'],
start_epoch=start_epoch
)
_, best_thresh = val_model(net, valloader, get_best_balanced_accuracy, protected_index, prediction_index)
logger.info(f'val_results, thresh, {best_thresh.item()}')
valid_results['base_model'] = print_objective_results(valloader, net, best_thresh, protected_index, prediction_index)
logger.info('test_results')
result_dict = print_objective_results(testloader, net, best_thresh, protected_index, prediction_index)
test_results['base_model'] = result_dict
def to_dataframe(y_true, y_pred, y_prot):
y_true, y_pred, y_prot = y_true.float().cpu().numpy(), y_pred.float().cpu().numpy(), y_prot.float().cpu().numpy()
df = pd.DataFrame({'y_true': y_true, 'y_pred': y_pred, 'y_prot': y_prot})
dataset = StandardDataset(df, 'y_true', [1.], ['y_prot'], [[1.]])
dataset.scores = y_pred.reshape(-1, 1)
return dataset
val_dataset = val_model(net, valloader, to_dataframe, protected_index, prediction_index)
test_dataset = val_model(net, testloader, to_dataframe, protected_index, prediction_index)
def eval_aif360_algorithm(y_pred, dataset, verbose=True):
global yaml_config
acc = float(np.mean(y_pred == dataset.labels.reshape(-1)))
bias = compute_bias(
torch.tensor(y_pred),
torch.tensor(dataset.labels.reshape(-1)),
torch.tensor(dataset.protected_attributes.reshape(-1)),
yaml_config['metric']
).item()
obj = compute_objective(acc, bias, margin=0.0)
if verbose:
logger.info(f'accuracy {acc}')
logger.info(f'{yaml_config["metric"]} {bias}')
logger.info(f'objective {obj}')
return {
'roc_auc': None,
'accuracy': float(acc),
'bias': float(bias),
'objective': float(obj)
}
# Evaluate ROC
if "ROC" in config['models']:
ROC = RejectOptionClassification(unprivileged_groups=[{'y_prot': 1.}],
privileged_groups=[{'y_prot': 0.}],
low_class_thresh=0.01, high_class_thresh=0.99,
num_class_thresh=100, num_ROC_margin=50,
metric_name="Average odds difference",
metric_ub=0.05, metric_lb=-0.05)
logger.info("Training ROC model with validation dataset.")
ROC = ROC.fit(val_dataset, val_dataset)
logger.info("Evaluating ROC model.")
logger.info('ROC val results')
val_y_pred = ROC.predict(val_dataset).labels.reshape(-1)
valid_results['ROC'] = eval_aif360_algorithm(val_y_pred, val_dataset)
logger.info('ROC test results')
test_y_pred = ROC.predict(test_dataset).labels.reshape(-1)
test_results['ROC'] = eval_aif360_algorithm(test_y_pred, test_dataset)
ROC = None
if 'EqOdds' in config['models']:
eo = EqOddsPostprocessing(privileged_groups=[{'y_prot': 0.}],
unprivileged_groups=[{'y_prot': 1.}])
logger.info("Training Equality of Odds model with validation dataset.")
eo = eo.fit(val_dataset, val_dataset)
logger.info("Evaluating Equality of Odds model.")
logger.info('Equality of Odds val results')
val_y_pred = eo.predict(val_dataset).labels.reshape(-1)
valid_results['EqOdds'] = eval_aif360_algorithm(val_y_pred, val_dataset)
logger.info('Equality of Odds test results')
test_y_pred = eo.predict(test_dataset).labels.reshape(-1)
test_results['EqOdds'] = eval_aif360_algorithm(test_y_pred, test_dataset)
eo = None
if 'CalibEqOdds' in config['models']:
cost_constraint = config['CalibEqOdds']['cost_constraint']
cpp = CalibratedEqOddsPostprocessing(privileged_groups=[{'y_prot': 0.}],
unprivileged_groups=[{'y_prot': 1.}],
cost_constraint=cost_constraint)
logger.info("Training Calibrated Equality of Odds model with validation dataset.")
cpp = cpp.fit(val_dataset, val_dataset)
logger.info("Evaluating Calibrated Equality of Odds model.")
logger.info('Calibrated Equality of Odds val results')
valid_y_pred = cpp.predict(val_dataset).labels.reshape(-1)
valid_results['CalibEqOdds'] = eval_aif360_algorithm(valid_y_pred, val_dataset)
logger.info('Equality of Odds test results')
test_y_pred = cpp.predict(test_dataset).labels.reshape(-1)
test_results['CalibEqOdds'] = eval_aif360_algorithm(valid_y_pred, val_dataset)
cpp = None
if 'random' in config['models']:
rand_result = [-np.inf, None, -1]
for iteration in range(101):
rand_model = copy.deepcopy(net)
rand_model.to(device)
for param in rand_model.parameters():
param.data = param.data * (torch.randn_like(param) * 0.1 + 1)
rand_model.eval()
best_obj, best_thresh = val_model(rand_model, valloader, get_best_objective, protected_index, prediction_index)
logger.info(f'iteration {iteration} obj {float(best_obj)}')
if best_obj > rand_result[0]:
logger.info('found new best')
del rand_result[1]
rand_result = [best_obj, copy.deepcopy(rand_model.state_dict()), best_thresh]
if iteration % 10 == 0:
logger.info(f"{iteration} / 101 trials have been sampled.")
logger.info(f'current best obj {float(rand_result[0])}')
# evaluate best random model
best_model = copy.deepcopy(net)
best_model.load_state_dict(rand_result[1])
best_model.to(device)
best_thresh = rand_result[2]
logger.info('val_results')
valid_results['random'] = print_objective_results(valloader, best_model, best_thresh, protected_index, prediction_index)
logger.info('test_results')
test_results['random'] = print_objective_results(testloader, best_model, best_thresh, protected_index, prediction_index)
torch.save(best_model.state_dict(), 'seed'+str(seed)+config['metric']+config['optimizer']+str(config['lr']) +
'_pro_'+config['protected_attr']+'_pre_'+config['prediction_attr']+config['random']['checkpoint'])
if 'layerwiseOpt' in config['models']:
base_model = copy.deepcopy(net)
best_state_dict, best_thresh, best_obj = None, None, np.inf
total_params = len(list(base_model.parameters()))
for index, param in enumerate(base_model.parameters()):
if index < total_params-config['layerwiseOpt']['num_layers']:
continue
logger.info(f'Evaluating param number {index} of {total_params}')
param_copy = copy.deepcopy(param)
def objective(new_param):
param.data[indices] = torch.tensor(new_param).to(device)
base_model.eval()
best_obj, thresh = val_model(base_model, valloader, get_best_objective, protected_index, prediction_index)
logger.info(f'Evaluating param number {index} of {total_params}')
return -float(best_obj)
std = param.flatten().cpu().detach().numpy().std()
num_elems = param.size().numel()
ratio = min(1., config['layerwiseOpt']['max_sparsity'] / num_elems)
indices = torch.rand(param.size()) < ratio
space = [Real(float(x.cpu().detach()) - 2.2*std, float(x.cpu().detach()) + 2.2*std) for x in param[indices]]
logger.info(f'Number of sparse indices: {indices.sum().item()}')
res_gbrt = gbrt_minimize(
objective,
space,
n_calls=20,
verbose=True
)
if res_gbrt.fun < best_obj:
param.data[indices] = torch.tensor(res_gbrt.x).to(device)
best_state_dict = copy.deepcopy(base_model.state_dict())
best_obj, best_thresh = val_model(base_model, valloader, get_best_objective, protected_index, prediction_index)
param.data = param_copy.data
best_model = copy.deepcopy(net)
best_model.load_state_dict(best_state_dict)
best_model.to(device)
logger.info('val_results')
valid_results['layerwiseOpt'] = print_objective_results(valloader, best_model, best_thresh, protected_index, prediction_index)
logger.info('test_results')
test_results['layerwiseOpt'] = print_objective_results(testloader, best_model, best_thresh, protected_index, prediction_index)
if 'adversarial' in config['models']:
unrefined_net = get_resnet_model()
base_model = copy.deepcopy(unrefined_net)
base_model.fc = nn.Linear(base_model.fc.in_features, base_model.fc.in_features)
actor = nn.Sequential(base_model, nn.Linear(base_model.fc.in_features, 2))
actor.to(device)
actor_optimizer = optim.Adam(actor.parameters(), lr=1e-4)
actor_loss_fn = nn.BCEWithLogitsLoss()
actor_loss = 0.
actor_steps = config['adversarial']['actor_steps']
critic = Critic(config['batch_size']*unrefined_net.fc.in_features)
critic.to(device)
critic_optimizer = optim.Adam(critic.parameters(), lr=1e-4)
critic_loss_fn = nn.MSELoss()
critic_loss = 0.
critic_steps = config['adversarial']['critic_steps']
for epoch in range(config['adversarial']['epochs']):
for param in critic.parameters():
param.requires_grad = True
for param in actor.parameters():
param.requires_grad = False
actor.eval()
critic.train()
for step, (inputs, labels) in enumerate(valloader):
if step > critic_steps:
break
inputs, labels = inputs.to(device), labels.to(device)
if inputs.size(0) != config['batch_size']:
continue
critic_optimizer.zero_grad()
with torch.no_grad():
y_pred = actor(inputs)
y_true = labels[:, prediction_index].float().to(device)
y_prot = labels[:, protected_index].float().to(device)
bias = compute_bias(y_pred, y_true, y_prot, config['metric'])
res = critic(base_model(inputs))
loss = critic_loss_fn(bias.unsqueeze(0), res[0])
loss.backward()
critic_loss += loss.item()
critic_optimizer.step()
if step % 100 == 0:
print_loss = critic_loss if (epoch*critic_steps + step) == 0 else critic_loss / (epoch*critic_steps + step)
logger.info(f'=======> Epoch: {(epoch, step)} Critic loss: {print_loss:.3f}')
for param in critic.parameters():
param.requires_grad = False
for param in actor.parameters():
param.requires_grad = True
actor.train()
critic.eval()
for step, (inputs, labels) in enumerate(valloader):
if step > actor_steps:
break
inputs, labels = inputs.to(device), labels.to(device)
if inputs.size(0) != config['batch_size']:
continue
actor_optimizer.zero_grad()
y_true = labels[:, prediction_index].float().to(device)
y_prot = labels[:, protected_index].float().to(device)
est_bias = critic(base_model(inputs))
loss = actor_loss_fn(actor(inputs)[:, 0], y_true)
loss = max(1, config['adversarial']['lambda']*(abs(est_bias)-config['objective']['epsilon']+config['adversarial']['margin'])+1) * loss
loss.backward()
actor_loss += loss.item()
actor_optimizer.step()
if step % 100 == 0:
print_loss = critic_loss if (epoch*actor_steps + step) == 0 else critic_loss / (epoch*actor_steps + step)
logger.info(f'=======> Epoch: {(epoch, step)} Actor loss: {print_loss:.3f}')
print_objective_results(valloader, actor, best_thresh, protected_index, prediction_index)
_, best_thresh = val_model(actor, valloader, get_best_objective, protected_index, prediction_index)
logger.info('val_results')
valid_results['adversarial'] = print_objective_results(valloader, actor, best_thresh, protected_index, prediction_index)
logger.info('test_results')
test_results['adversarial'] = print_objective_results(testloader, actor, best_thresh, protected_index, prediction_index)
torch.save(actor.state_dict(), config['adversarial']['checkpoint'])
with open('valid_seed'+str(seed)+config['metric']+config['optimizer']+str(config['lr'])+'_pro_'+config['protected_attr']+'_pre_'+config['prediction_attr']+config['output'], 'w') as filehandler:
json.dump(valid_results, filehandler)
with open('test_seed'+str(seed)+config['metric']+config['optimizer']+str(config['lr'])+'_pro_'+config['protected_attr']+'_pre_'+config['prediction_attr']+config['output'], 'w') as filehandler:
json.dump(test_results, filehandler)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Args for CelebA experiments')
parser.add_argument("config", help="Path to configuration yaml file.")
args = parser.parse_args()
global yaml_config
with open(args.config, 'r') as fh:
yaml_config = yaml.load(fh, Loader=yaml.FullLoader)
main(yaml_config)