-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmain_driver.py
158 lines (148 loc) · 5.32 KB
/
main_driver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import sys
import os
import logging
logging.basicConfig(
format="%(asctime)s %(levelname)-8s %(message)s",
level=logging.INFO,
datefmt="%Y-%m-%d %H:%M:%S",
)
import argparse
import commentjson
import numpy as np
import json
from src import datasets, model, explainer, metric, experiments, parse_utils
def get_args():
parser = argparse.ArgumentParser("Driver for the explainability project")
parser.add_argument(
"--mode",
default="regression",
choices=["classification", "regression"],
help="Classification or regression?",
)
parser.add_argument(
"--dataset",
required="--experiment" not in sys.argv,
help="Name of the dataset to train on",
)
parser.add_argument(
"--model",
required="--experiment" not in sys.argv,
help="Algorithm to use for training",
)
parser.add_argument(
"--explainer", required="--experiment" not in sys.argv, help="Explainer to use"
)
parser.add_argument(
"--metric", default="faithfulness", help="Metric to evaluate the explanation"
)
data_kwargs_group = parser.add_mutually_exclusive_group()
data_kwargs_group.add_argument(
"--data-kwargs",
default={},
type=commentjson.loads,
help=r"Custom data args needed to generate the dataset.\n Default = '{}' ",
)
data_kwargs_group.add_argument(
"--data-kwargs-json",
default={},
type=str,
help=r"Path to json file containing custom data args.",
)
model_kwargs_group = parser.add_mutually_exclusive_group()
model_kwargs_group.add_argument(
"--model-kwargs",
default={},
type=commentjson.loads,
help=r"Custom data args needed to generate the dataset.\n Default = '{}' ",
)
model_kwargs_group.add_argument(
"--model-kwargs-json",
default={},
type=str,
help=r"Path to json file containing custom data args.",
)
parser.add_argument(
"--seed",
type=int,
default=7,
help="Setting a seed to make everything deterministic.",
)
parser.add_argument(
"--experiment",
action="store_true",
help="Run multiple experiments using an experiment config file.",
)
parser.add_argument(
"--rho",
type=float,
help="Control the rho of an experiment.",
)
parser.add_argument(
"--rhos",
nargs="+",
help="Control the rhos of a mixture experiment.",
)
parser.add_argument(
"--experiment-json", required="--experiment" in sys.argv, type=str, help=""
)
parser.add_argument(
"--no-logs",
action="store_true",
help="whether to save results or not. You can use this avoid overriding your result files while testing.",
)
parser.add_argument(
"--results-dir",
default="results/logs/",
type=str,
help="Path to save results in csv files.",
)
args = parser.parse_args()
if args.data_kwargs_json:
args.data_kwargs = commentjson.load(open(args.data_kwargs_json))
if args.seed:
parse_utils.set_global_seed(args.seed)
if args.experiment_json:
args.experiment_json = commentjson.load(open(args.experiment_json))
return args
def process_args(args):
if args.experiment_json:
if args.rho is not None:
args.experiment_json["dataset"]["data_kwargs"]["rho"] = args.rho
if args.rhos is not None:
args.experiment_json["dataset"]["data_kwargs"]["rhos"] = [float(rho) for rho in args.rhos]
if args.dataset is not None:
args.experiment_json["dataset"]["name"] = args.dataset
metric_kwargs = {}
if "conditional" in args.experiment_json:
metric_kwargs['conditional'] = args.experiment_json['conditional']
logging.info(
f'\n Dataset config is: {json.dumps(args.experiment_json["dataset"])}'
)
dataset = datasets.Data(
args.experiment_json["dataset"]["name"],
args.mode,
**args.experiment_json["dataset"]["data_kwargs"],
)
models = [
model.Model(mod["name"], args.mode, **mod["model_kwargs"])
for mod in args.experiment_json["models"]
]
explainers = [
explainer.Explainer(expl["name"], **expl["expl_kwargs"]) for expl in args.experiment_json["explainers"]
]
metrics = [metric.Metric(metr, **metric_kwargs) for metr in args.experiment_json["metrics"]]
return experiments.Experiment(dataset, models, explainers, metrics)
dataset = datasets.Data(args.dataset, args.mode, **args.data_kwargs)
models = model.Model(args.model, args.mode, **args.model_kwargs)
explainers = explainer.Explainer(args.explainer)
metrics = metric.Metric(args.metric)
return experiments.Experiment(dataset, [models], [explainers], [metrics])
if __name__ == "__main__":
args = get_args()
experiment = process_args(args)
results = experiment.get_results()
logging.info(f"\nExperiment results : {json.dumps(results, indent=4)}")
if not args.no_logs:
parse_utils.save_experiment(experiment, os.path.join(args.results_dir, "checkpoints"), args.rho)
parse_utils.save_results(results, args.results_dir)
parse_utils.save_results_csv(results, args.results_dir)