-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathload_data.py
103 lines (73 loc) · 3.1 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# Copyright 2020 by Andrey Ignatov. All Rights Reserved.
from torch.utils.data import Dataset
from torchvision import transforms
from scipy import misc
import numpy as np
import imageio
import torch
import os
to_tensor = transforms.Compose([
transforms.ToTensor()
])
def extract_bayer_channels(raw):
# Reshape the input bayer image
ch_B = raw[1::2, 1::2]
ch_Gb = raw[0::2, 1::2]
ch_R = raw[0::2, 0::2]
ch_Gr = raw[1::2, 0::2]
RAW_combined = np.dstack((ch_B, ch_Gb, ch_R, ch_Gr))
RAW_norm = RAW_combined.astype(np.float32) / (4 * 255)
return RAW_norm
class LoadData(Dataset):
def __init__(self, dataset_dir, dataset_size, dslr_scale, test=False):
if test:
self.raw_dir = os.path.join(dataset_dir, 'test', 'huawei_raw')
self.dslr_dir = os.path.join(dataset_dir, 'test', 'canon')
self.dataset_size = dataset_size
else:
self.raw_dir = os.path.join(dataset_dir, 'train', 'huawei_raw')
self.dslr_dir = os.path.join(dataset_dir, 'train', 'canon')
self.dataset_size = dataset_size
self.scale = dslr_scale
self.test = test
def __len__(self):
return self.dataset_size
def __getitem__(self, idx):
raw_image = np.asarray(imageio.imread(os.path.join(self.raw_dir, str(idx) + '.png')))
raw_image = extract_bayer_channels(raw_image)
raw_image = torch.from_numpy(raw_image.transpose((2, 0, 1)))
dslr_image = misc.imread(os.path.join(self.dslr_dir, str(idx) + ".jpg"))
dslr_image = np.asarray(dslr_image)
dslr_image = np.float32(misc.imresize(dslr_image, self.scale / 2.0)) / 255.0
dslr_image = torch.from_numpy(dslr_image.transpose((2, 0, 1)))
return raw_image, dslr_image
class LoadVisualData(Dataset):
def __init__(self, data_dir, size, scale, level, full_resolution=False):
self.raw_dir = os.path.join(data_dir, 'test', 'huawei_full_resolution')
self.dataset_size = size
self.scale = scale
self.level = level
self.full_resolution = full_resolution
self.test_images = os.listdir(self.raw_dir)
if level > 1 or full_resolution:
self.image_height = 1440
self.image_width = 1984
elif level > 0:
self.image_height = 1280
self.image_width = 1280
else:
self.image_height = 960
self.image_width = 960
def __len__(self):
return self.dataset_size
def __getitem__(self, idx):
raw_image = np.asarray(imageio.imread(os.path.join(self.raw_dir, self.test_images[idx])))
raw_image = extract_bayer_channels(raw_image)
if self.level > 1 or self.full_resolution:
raw_image = raw_image[0:self.image_height, 0:self.image_width, :]
elif self.level > 0:
raw_image = raw_image[80:self.image_height + 80, 352:self.image_width + 352, :]
else:
raw_image = raw_image[240:self.image_height + 240, 512:self.image_width + 512, :]
raw_image = torch.from_numpy(raw_image.transpose((2, 0, 1)))
return raw_image