-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
93 lines (73 loc) · 2.93 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#!/usr/bin/python3
#
# GpuWrapper example code
#
# OpenCV: Understanding warpPerspective / perspective transform
# https://stackoverflow.com/questions/45717277
import time
import cv2
import numpy as np
from cv2cuda import gpuwrapper
def test_warpperspective():
img = cv2.imread('test_transform.jpg')
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# source points
top_left = [521, 103]
top_right = [549, 131]
bottom_right = [222, 458]
bottom_left = [194, 430]
pts = np.array([bottom_left, bottom_right, top_right, top_left])
# target points
y_off = 50; # y offset
top_left_dst = [top_left[0], top_left[1] - y_off]
top_right_dst = [top_left_dst[0] + 39.6, top_left_dst[1]]
bottom_right_dst = [top_right_dst[0], top_right_dst[1] + 462.4]
bottom_left_dst = [top_left_dst[0], bottom_right_dst[1]]
dst_pts = np.array([bottom_left_dst, bottom_right_dst, top_right_dst, top_left_dst])
# generate a preview to show where the warped bar would end up
preview = np.copy(img)
cv2.polylines(preview, np.int32([dst_pts]), True, (0,0,255), 5)
cv2.polylines(preview, np.int32([pts]), True, (255,0,255), 1)
cv2.imwrite('preview.jpg', preview)
# calculate transformation matrix
pts = np.float32(pts.tolist())
dst_pts = np.float32(dst_pts.tolist())
M = cv2.getPerspectiveTransform(pts, dst_pts)
# wrap image and draw the resulting image
image_size = (img.shape[1], img.shape[0])
warped = cv2.warpPerspective(img, M, dsize = image_size, flags = cv2.INTER_LINEAR)
cv2.imwrite('warped.jpg', warped)
h, w = img.shape
warped = gpuwrapper.cudaWarpPerspectiveWrapper(
img, M.astype(np.float32), (w, h), cv2.INTER_LINEAR)
cv2.imwrite('warped_gpu.jpg', warped)
def test_resize():
img = cv2.imread('test_transform.jpg')
img = gpuwrapper.cudaResizeWrapper(img, (30, 30))
cv2.imwrite('resize.jpg', img)
def test_resize_performance():
imgs = [np.random.randint(255, size=(s, s, 3), dtype=np.uint8)
for s in (1000, 2000, 3000, 4000)]
for i, img in enumerate(imgs):
t_start = time.time()
img_r = cv2.resize(img.astype(np.float32), (500, 500))
t_end = time.time()
print('CPU resize time #{0}, {1}: {2} ms'.format(
i, img.shape, (t_end - t_start) * 1000))
print('GPU round 1')
for i, img in enumerate(imgs):
t_start = time.time()
img_r = gpuwrapper.cudaResizeWrapper(img, (500, 500))
t_end = time.time()
print('GPU resize time #{0}, {1}: {2} ms'.format(
i, img.shape, (t_end - t_start) * 1000))
print('GPU round 2')
for i, img in enumerate(imgs):
t_start = time.time()
img_r = gpuwrapper.cudaResizeWrapper(img, (500, 500))
t_end = time.time()
print('GPU resize time #{0}, {1}: {2} ms'.format(
i, img.shape, (t_end - t_start) * 1000))
test_warpperspective()
test_resize()
test_resize_performance()