forked from Barry-Jay/lambdaSF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHomomorphism.v
409 lines (352 loc) · 14.4 KB
/
Homomorphism.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
(* This program is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2.1 *)
(* of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU Lesser General Public *)
(* License along with this program; if not, write to the Free *)
(* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *)
(* 02110-1301 USA *)
(**********************************************************************)
(* LambdaFactor Calculus *)
(* *)
(* is implemented in Coq by adapting the implementation of *)
(* Lambda Calculus from Project Coq *)
(* 2015 *)
(**********************************************************************)
(**********************************************************************)
(* Homomorphism.v *)
(* *)
(* Barry Jay *)
(* *)
(**********************************************************************)
Require Import Arith.
Require Import Max.
Require Import Test.
Require Import General.
Require Import Lambda.Terms.
Require Import Lambda.Lambda_tactics.
Require Import Lambda.Substitution_term.
Require Import Lambda.Reduction.
Require Import Lambda.Redexes.
Require Import Lambda.Substitution.
Require Import Lambda.Residuals.
Require Import Lambda.Marks.
Require Import Lambda.Simulation.
Require Import Lambda.Cube.
Require Import Lambda.Confluence.
Require Import Lambda.Eta.
Require Import Lambda.Closed.
Require Import LamSF_Terms.
Require Import LamSF_Tactics.
Require Import LamSF_Substitution_term.
Require Import SF_reduction.
Require Import LamSF_reduction.
Require Import LamSF_Normal.
Require Import LamSF_Closed.
Require Import LamSF_Eval.
Require Import Omega.
Definition ref := Terms.Ref.
Definition ap := Terms.App .
Definition abs := Terms.Abs.
Definition abs_S := (abs (abs (abs (ap (ap (ref 2) (ref 0)) (ap (ref 1) (ref 0)))))) .
Definition abs_K := (abs (abs (ref 1))).
Definition abs_I := (abs (ref 0)).
Definition abs_KI := (abs (abs (ref 0))).
Inductive homomorphism: (lamSF -> lambda) -> Prop :=
| hom : forall h : lamSF -> lambda,
(forall M N, h (App M N) = Terms.App (h M) (h N)) ->
(forall n, h(Ref n) = Terms.Ref n) ->
(forall M N, lamSF_red M N -> beta_eta_eq (h M) (h N)) ->
(forall M, maxvar M = 0 -> Closed.maxvar (h M) = 0 ) ->
homomorphism h
.
Lemma homomorphism_I : forall h, homomorphism h -> beta_eta_eq (h i_op) abs_I.
Proof.
split_all.
inversion_clear H; split_all.
assert(Closed.maxvar(h i_op) = 0) by eapply2 H3.
assert(forall k, Terms.lift_rec (h i_op) 0 k = h i_op).
eapply2 Closed.lift_rec_closed. omega.
assert(beta_eta (abs (ap (h i_op) (ref 0))) (h i_op)).
unfold beta_eta; Lambda_tactics.one_step.
apply Lambda_tactics.seq_red with (abs (ap (h i_op) (ref 0))); auto.
unfold abs, ap; auto.
rewrite <- (H4 1) at 1.
auto.
assert(beta_eta
(abs (ap (h i_op) (ref 0)))
(abs (h (App i_op (Ref 0))))).
repeat (eapply2 preserves_abs_beta_eta).
repeat (rewrite <- H1).
repeat (rewrite <- H0).
eapply2 Lambda_tactics.zero_red.
(* end step 2 *)
elim(diamond_beta_eta (abs (ap (h i_op) (ref 0)))
(h i_op) H5 (abs (h (App i_op (Ref 0))))); split_all.
assert(beta_eta_eq (h i_op)
(abs (h (App i_op (Ref 0))))).
eapply2 common_reduct.
(* end step 3 *)
assert(beta_eta_eq
(abs (h (App i_op (Ref 0))))
abs_I).
unfold abs_I.
repeat (eapply2 preserves_abs_beta_eta_eq).
apply beta_eta_eq_transitive with (h (App (App k_op (Ref 0)) (App k_op (Ref 0)))).
eapply2 H2.
unfold_op; auto.
apply beta_eta_eq_transitive with (h (Ref 0)).
eapply2 H2.
unfold_op; auto.
repeat (rewrite H0); repeat (rewrite H1).
unfold ap, ref; eauto.
eapply2 beta_eta_eq_transitive; eauto.
Qed.
Lemma homomorphism_K : forall h, homomorphism h -> beta_eta_eq (h k_op) abs_K.
Proof.
split_all.
inversion_clear H; split_all.
assert(Closed.maxvar(h k_op) = 0) by eapply2 H3.
assert(forall k, Terms.lift_rec (h k_op) 0 k = h k_op).
eapply2 Closed.lift_rec_closed. omega.
assert(beta_eta (abs (abs (ap (ap (h k_op) (ref 1)) (ref 0)))) (h k_op)).
apply Lambda_tactics.succ_red with (abs (ap (h k_op) (ref 0))).
unfold beta_eta1.
apply Lambda_tactics.seq_red with (abs (abs (ap (ap (h k_op) (ref 1)) (ref 0)))).
auto.
unfold abs, ap; auto.
eapply2 abs_etared.
replace (Terms.App (h k_op)(ref 1)) with (Terms.lift_rec (ap (h k_op) (ref 0)) 0 1).
eapply2 eta_red.
(unfold abs, ap); split_all.
Lambda_tactics.relocate_lt.
rewrite H4.
auto.
Lambda_tactics.one_step.
apply Lambda_tactics.seq_red with (abs (ap (h k_op) (ref 0))); auto.
unfold abs, ap; auto.
rewrite <- (H4 1) at 1.
auto.
assert(beta_eta
(abs (abs (ap (ap (h k_op) (ref 1)) (ref 0))))
(abs (abs (h (App (App k_op (Ref 1)) (Ref 0)))))).
repeat (eapply2 preserves_abs_beta_eta).
repeat (rewrite <- H1).
repeat (rewrite <- H0).
eapply2 Lambda_tactics.zero_red.
(* end step 2 *)
elim(diamond_beta_eta (abs (abs (ap (ap (h k_op) (ref 1)) (ref 0))))
(h k_op) H5
(abs (abs (h (App (App k_op (Ref 1)) (Ref 0)))))); split_all.
assert(beta_eta_eq (h k_op)
(abs (abs (h (App (App k_op (Ref 1)) (Ref 0)))))).
eapply2 common_reduct.
(* end step 3 *)
assert(beta_eta_eq
(abs (abs (h (App (App k_op (Ref 1)) (Ref 0)))))
abs_K).
unfold abs_K.
repeat (eapply2 preserves_abs_beta_eta_eq).
apply beta_eta_eq_transitive with (h (Ref 1)).
eapply2 H2.
unfold_op; auto.
repeat (rewrite H0); repeat (rewrite H1).
unfold ap, ref; eauto.
eapply2 beta_eta_eq_transitive; eauto.
Qed.
Lemma homomorphism_KI : forall h, homomorphism h -> beta_eta_eq (h (App k_op i_op)) abs_KI.
Proof.
split_all.
inversion_clear H; split_all.
assert(Closed.maxvar(h (App k_op i_op)) = 0) by eapply2 H3.
assert(forall k, Terms.lift_rec (h (App k_op i_op)) 0 k = h (App k_op i_op)).
eapply2 Closed.lift_rec_closed. omega.
assert(beta_eta (abs (abs (ap (ap (h (App k_op i_op)) (ref 1)) (ref 0)))) (h (App k_op i_op))).
apply Lambda_tactics.succ_red with (abs (ap (h (App k_op i_op)) (ref 0))).
unfold beta_eta1.
apply Lambda_tactics.seq_red with (abs (abs (ap (ap (h (App k_op i_op)) (ref 1)) (ref 0)))).
auto.
unfold abs, ap; auto.
eapply2 abs_etared.
replace (Terms.App (h (App k_op i_op))(ref 1)) with (Terms.lift_rec (ap (h (App k_op i_op)) (ref 0)) 0 1).
eapply2 eta_red.
(unfold abs, ap); split_all.
Lambda_tactics.relocate_lt.
rewrite H4.
auto.
Lambda_tactics.one_step.
apply Lambda_tactics.seq_red with (abs (ap (h (App k_op i_op)) (ref 0))); auto.
unfold abs, ap; auto.
rewrite <- (H4 1) at 1.
auto.
assert(beta_eta
(abs (abs (ap (ap (h (App k_op i_op)) (ref 1)) (ref 0))))
(abs (abs (h (App (App (App k_op i_op) (Ref 1)) (Ref 0)))))).
repeat (eapply2 preserves_abs_beta_eta).
repeat (rewrite <- H1).
repeat (rewrite <- H0).
eapply2 Lambda_tactics.zero_red.
(* end step 2 *)
elim(diamond_beta_eta (abs (abs (ap (ap (h (App k_op i_op)) (ref 1)) (ref 0))))
(h (App k_op i_op)) H5
(abs (abs (h (App (App (App k_op i_op) (Ref 1)) (Ref 0)))))); split_all.
assert(beta_eta_eq (h (App k_op i_op))
(abs (abs (h (App (App (App k_op i_op) (Ref 1)) (Ref 0)))))).
eapply2 common_reduct.
(* end step 3 *)
assert(beta_eta_eq
(abs (abs (h (App (App (App k_op i_op) (Ref 1)) (Ref 0)))))
abs_KI).
unfold abs_KI.
repeat (eapply2 preserves_abs_beta_eta_eq).
apply beta_eta_eq_transitive with (h (App i_op (Ref 0))).
eapply2 H2.
unfold_op; auto.
apply beta_eta_eq_transitive with (h (App (App k_op (Ref 0)) (App k_op (Ref 0)))).
eapply2 H2.
unfold_op; auto.
apply beta_eta_eq_transitive with (h (Ref 0)).
eapply2 H2.
unfold_op; auto.
repeat (rewrite H0); repeat (rewrite H1).
unfold ap, ref; eauto.
eapply2 beta_eta_eq_transitive; eauto.
Qed.
Lemma homomorphism_S : forall h, homomorphism h -> beta_eta_eq (h (Op Sop)) abs_S.
Proof.
split_all.
inversion_clear H; split_all.
assert(Closed.maxvar(h (Op Sop)) = 0) by eapply2 H3.
assert(forall k, Terms.lift_rec (h (Op Sop)) 0 k = h (Op Sop)).
eapply2 Closed.lift_rec_closed. omega.
assert(beta_eta (abs (abs (abs (ap (ap (ap (h (Op Sop)) (ref 2)) (ref 1)) (ref 0))))) (h (Op Sop))).
apply Lambda_tactics.succ_red with (abs (abs (ap (ap (h (Op Sop)) (ref 1)) (ref 0)))).
unfold beta_eta1.
apply Lambda_tactics.seq_red with (abs (abs (abs (ap (ap (ap (h (Op Sop)) (ref 2)) (ref 1)) (ref 0))))).
auto.
unfold abs, ap; auto.
eapply2 abs_etared. eapply2 abs_etared.
replace (Terms.App (Terms.App (h (Op Sop)) (ref 2)) (ref 1)) with (Terms.lift_rec (ap (ap (h (Op Sop)) (ref 1)) (ref 0)) 0 1).
eapply2 eta_red.
(unfold abs, ap); split_all.
Lambda_tactics.relocate_lt.
rewrite H4.
auto.
apply Lambda_tactics.succ_red with (abs (ap (h (Op Sop)) (ref 0))).
unfold beta_eta1.
apply Lambda_tactics.seq_red with (abs (abs (ap (ap (h (Op Sop)) (ref 1)) (ref 0)))).
auto.
unfold abs, ap; auto.
eapply2 abs_etared.
replace (Terms.App (h (Op Sop))(ref 1)) with (Terms.lift_rec (ap (h (Op Sop)) (ref 0)) 0 1).
eapply2 eta_red.
(unfold abs, ap); split_all.
Lambda_tactics.relocate_lt.
rewrite H4.
auto.
Lambda_tactics.one_step.
apply Lambda_tactics.seq_red with (abs (ap (h (Op Sop)) (ref 0))); auto.
unfold abs, ap; auto.
rewrite <- (H4 1) at 1.
auto.
(* end step 1 *)
assert(beta_eta
(abs (abs (abs (ap (ap (ap (h (Op Sop)) (ref 2)) (ref 1)) (ref 0)))))
(abs (abs (abs (h (App (App (App (Op Sop) (Ref 2)) (Ref 1)) (Ref 0))))))).
repeat (eapply2 preserves_abs_beta_eta).
repeat (rewrite <- H1).
repeat (rewrite <- H0).
eapply2 Lambda_tactics.zero_red.
(* end step 2 *)
elim(diamond_beta_eta (abs (abs (abs (ap (ap (ap (h (Op Sop)) (ref 2)) (ref 1)) (ref 0)))))
(h (Op Sop)) H5 (abs
(abs (abs (h (App (App (App (Op Sop) (Ref 2)) (Ref 1)) (Ref 0))))))); split_all.
assert(beta_eta_eq (h (Op Sop)) (abs
(abs (abs (h (App (App (App (Op Sop) (Ref 2)) (Ref 1)) (Ref 0))))))).
eapply2 common_reduct.
(* end step 3 *)
assert(beta_eta_eq (abs
(abs (abs (h (App (App (App (Op Sop) (Ref 2)) (Ref 1)) (Ref 0))))))
abs_S).
unfold abs_S.
repeat (eapply2 preserves_abs_beta_eta_eq).
apply beta_eta_eq_transitive with (h (App (App (Ref 2) (Ref 0)) (App (Ref 1) (Ref 0)))).
eapply2 H2.
repeat (rewrite H0); repeat (rewrite H1).
unfold ap, ref; eauto.
eapply2 beta_eta_eq_transitive; eauto.
Qed.
Lemma identity_M: forall h, homomorphism h -> forall M, beta_eta_eq (ap (ap (h s_op) (h k_op)) (h M)) abs_I.
Proof.
split_all.
assert(beta_eta_eq (h (Op Sop)) abs_S) by (eapply2 homomorphism_S).
assert(beta_eta_eq (h k_op) abs_K) by (eapply2 homomorphism_K).
assert(beta_eta_eq (ap (ap (h s_op) (h k_op)) (h M)) (ap (ap abs_S abs_K) (h M))).
repeat (eapply2 preserves_app_beta_eta_eq).
assert(beta_eta (ap (ap abs_S abs_K) (h M)) abs_I).
unfold abs_S, abs_I, ap, abs, par_red.
apply Lambda_tactics.succ_red with (ap (Terms.subst abs_K (abs (abs (ap (ap (ref 2) (ref 0)) (ap (ref 1) (ref 0)))))) (h M)).
unfold beta_eta1. Lambda_tactics.seq_l.
unfold Terms.subst.
unfold abs_K, ap, abs, ref, Terms.subst_rec; fold Terms.subst_rec.
Lambda_tactics.insert_Ref_out.
Lambda_tactics.relocate_lt.
apply Lambda_tactics.succ_red with (Terms.subst (h M) (abs (ap (ap (abs (abs (ref 1))) (ref 0))(ap (ref 1) (ref 0))))).
unfold beta_eta1. Lambda_tactics.seq_l.
unfold Terms.subst.
unfold abs_K, ap, abs, ref, Terms.subst_rec; fold Terms.subst_rec.
Lambda_tactics.insert_Ref_out.
apply Lambda_tactics.succ_red with (abs (ap (Terms.subst (ref 0) (abs (ref 1))) (ap (Terms.lift_rec (h M) 0 1) (ref 0)))).
unfold beta_eta1. Lambda_tactics.seq_l.
unfold Terms.subst.
unfold abs_K, ap, abs, ref, Terms.subst_rec; fold Terms.subst_rec.
Lambda_tactics.insert_Ref_out.
Lambda_tactics.relocate_lt.
apply Lambda_tactics.succ_red with (abs (Terms.subst (ap (Terms.lift_rec (h M) 0 1) (ref 0)) (ref 1))).
unfold beta_eta1. Lambda_tactics.seq_l.
unfold Terms.subst.
unfold abs_K, ap, abs, ref, Terms.subst_rec; fold Terms.subst_rec.
Lambda_tactics.insert_Ref_out.
auto.
eapply2 beta_eta_eq_transitive.
Qed.
Lemma trivial_homomorphism1: forall h, homomorphism h -> forall M, beta_eta_eq (h M) (ap (ap (ap (h f_op) abs_I) (h f_op)) (ap (h k_op) (h i_op))).
Proof.
assert(forall M, lamSF_red (App (App (App f_op (App (App s_op k_op) M)) f_op) (App k_op i_op)) M).
split_all. repeat eval_lamSF0.
split_all. inversion H0.
assert(beta_eta_eq (h (App (App (App f_op (App (App s_op k_op) M)) f_op) (App k_op i_op))) (h M)) by (split_all; eapply2 H3).
repeat (rewrite H1 in H0).
assert(beta_eta_eq (ap (ap (ap (h f_op) (ap (ap (h s_op) (h k_op)) (h M))) (h f_op)) (ap (h k_op) (h i_op)))(ap (ap (ap (h f_op) abs_I) (h f_op)) (ap (h k_op) (h i_op)))).
repeat(eapply2 preserves_app_beta_eta_eq).
eapply2 identity_M.
repeat (rewrite H1 in H6).
assert(beta_eta_eq (h M) (ap (ap (ap (h f_op) (ap (ap (h s_op) (h k_op)) (h M))) (h f_op))
(ap (h k_op) (h i_op)))) by eapply2 beta_eta_eq_symmetric.
eapply2 beta_eta_eq_transitive.
Qed.
Lemma trivial_homomorphism: forall h, homomorphism h -> forall M N, beta_eta_eq (h M) (h N).
Proof.
split_all.
eapply beta_eta_eq_transitive.
eexact (trivial_homomorphism1 h H M).
eapply beta_eta_eq_symmetric.
eexact (trivial_homomorphism1 h H N).
Qed.
Theorem no_homomorphism: forall h, homomorphism h -> False.
Proof.
split_all. inversion H.
assert(beta_eta_eq (h (Ref 0)) (h (Ref 1))) by eapply2 trivial_homomorphism.
repeat (rewrite H1 in H5).
inversion H5.
assert(P = ref 0) by eapply2 stable_beta_eta_ref.
assert(P = ref 1) by eapply2 stable_beta_eta_ref.
subst.
inversion H11.
Qed.