-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathlayers.py
88 lines (71 loc) · 3.13 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import tensorflow as tf
from tensorflow.keras import layers
kernel_init = tf.keras.initializers.GlorotNormal()
class Conv2D(layers.Conv2D):
def __init__(self, kernel_size = 3, padding = 'same', **kwargs):
super(Conv2D, self).__init__(
kernel_size = kernel_size,
padding = padding,
kernel_initializer = kernel_init,
bias_initializer = tf.keras.initializers.Zeros(),
**kwargs
)
class Conv2DBlock(layers.Layer):
def __init__(self, filters, batchnorm = True, activate = True, **kwargs):
super(Conv2DBlock, self).__init__()
self.conv = Conv2D(filters = filters, **kwargs)
# I forgot to set use_bias to False...
# you please set it to False if you want to save some parameters
# because batchnorm right after conv layer is gonna make the biases obsolete
self.batchnorm = layers.BatchNormalization() if batchnorm else None
self.activate = layers.PReLU(shared_axes = [1, 2]) if activate else None
def call(self, inputs):
x = self.conv(inputs)
if self.batchnorm:
x = self.batchnorm(x)
if self.activate:
x = self.activate(x)
return x
class PixelShuffleUpSampling(layers.Layer):
def __init__(self, filters, scale, **kwargs):
super(PixelShuffleUpSampling, self).__init__(**kwargs)
self.conv1 = Conv2DBlock(filters = filters, batchnorm = False, activate = False)
self.upsample = layers.Lambda(lambda x: tf.nn.depth_to_space(x, scale))
self.prelu = layers.PReLU(shared_axes = [1, 2])
def call(self, x):
x = self.conv1(x)
x = self.upsample(x)
x = self.prelu(x)
return x
class ResidualDenseBlock(layers.Layer):
def __init__(self, filters = 64):
super(ResidualDenseBlock, self).__init__()
self.conv1 = Conv2DBlock(filters = filters // 2)
self.conv2 = Conv2DBlock(filters = filters // 2)
self.conv3 = Conv2DBlock(filters = filters, activate = False)
def call(self, inputs):
x1 = self.conv1(inputs)
x2 = self.conv2(tf.concat([x1, inputs], 3))
outputs = self.conv3(tf.concat([x2, x1], 3))
return outputs + inputs
class RRDBlock(layers.Layer):
def __init__(self, filters, **kwargs):
super(RRDBlock, self).__init__(**kwargs)
self.rdb_1 = ResidualDenseBlock(filters)
self.rdb_2 = ResidualDenseBlock(filters)
self.rdb_3 = ResidualDenseBlock(filters)
self.rrdb_inputs_scales = tf.Variable(
tf.constant(value = 1.0, dtype = tf.float32, shape = [1, 1, 1, filters]),
name = f'{self.name}_rrdb_inputs_scales',
trainable = True
)
self.rrdb_outputs_scales = tf.Variable(
tf.constant(value = 0.5, dtype = tf.float32, shape = [1, 1, 1, filters]),
name = f'{self.name}_rrdb_outputs_scales',
trainable = True
)
def call(self, inputs):
x1 = self.rdb_1(inputs)
x2 = self.rdb_2(x1)
outputs = self.rdb_3(x2)
return (self.rrdb_inputs_scales * inputs) + (self.rrdb_outputs_scales * outputs)