-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathCentralValleyClassification.js
155 lines (129 loc) · 6.37 KB
/
CentralValleyClassification.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
///////////////
// Prepare data
///////////////
var seed = 2015;
// Use these bands for prediction.
var bands2010 = ['B1', 'B2', 'B3', 'B4', 'B5', 'B7'];
var bands2015 = ['B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B10', 'B11'];
// Create median-pixel composites for the summers of 2010 and 2015 from Landsat 5 & 8.
var vizParams2010 = {bands: ['B3', 'B2', 'B1'], min: 0, max: 0.3};
var vizParams2015 = {bands: ['B4', 'B3', 'B2'], min: 0, max: 0.3};
var summer2010 = ee.ImageCollection('LANDSAT/LT5_L1T_TOA')
.filterDate('2010-06-01', '2010-08-30')
.select(bands2010);
var summer2015 = ee.ImageCollection('LANDSAT/LC8_L1T_TOA')
.filterDate('2015-06-01', '2015-08-30')
.select(bands2015);
var median2010 = summer2010.median();
var median2015 = summer2015.median();
// Get boundary of Central Valley
var centralValley = ee.FeatureCollection('ft:1h46ENpEp8vO3pOe1EqeF1sZLEDhSVMxbu8pHAoU4', 'geometry');
// Clip Landsat composite by California state boundary.
var clipped2010 = median2010.clip(centralValley);
var clipped2015 = median2015.clip(centralValley);
// Import training data.
// 0: BuiltUp, 1: Water, 2: BareSoil, 3: Vegetation
var polygons2010 = ee.FeatureCollection('ft:1_HZ7IEagQdZvXpnIlmIRk1W_jcqffc0NN3wDUFw3', 'geometry');
var polygons2015 = ee.FeatureCollection('ft:1scXL_EoS1dsU2x87pgU2LWgFG9wpwI5WSibgGiwU', 'geometry');
// Assign random numbers in preparation for a test/train split that will maintain class proportions.
// var builtUp = polygons.filterMetadata('Class', 'equals', 0);
// var water = polygons.filterMetadata('Class', 'equals', 1);
// var bareSoil = polygons.filterMetadata('Class', 'equals', 2);
// var vegetation = polygons.filterMetadata('Class', 'equals', 3);
// var classes = [builtUp, water, bareSoil, vegetation];
// for (var i = 0; i < classes.length; i++) {
// classes[i] = classes[i].randomColumn('random', 1001);
// }
// print(classes);
polygons2010 = polygons2010.randomColumn('random', seed);
polygons2015 = polygons2015.randomColumn('random', seed);
// Join the Class & random values with all pixels in each polygon in the training datasets.
// (Landsat 5 & 8 spatial res: 30 m)
var regionsOfInterest2010 = clipped2010.sampleRegions({
collection: polygons2010,
properties: ['Class', 'random'],
scale: 30
});
var regionsOfInterest2015 = clipped2015.sampleRegions({
collection: polygons2015,
properties: ['Class', 'random'],
scale: 30
});
// Split into training and testing ROIs.
var training2010 = regionsOfInterest2010.filterMetadata('random', 'less_than', 0.7);
var testing2010 = regionsOfInterest2010.filterMetadata('random', 'not_less_than', 0.7);
var training2015 = regionsOfInterest2015.filterMetadata('random', 'less_than', 0.7);
var testing2015 = regionsOfInterest2015.filterMetadata('random', 'not_less_than', 0.7);
/////////////////
// Classification
/////////////////
// var classifier2010 = ee.Classifier.naiveBayes();
// var classifier2010 = ee.Classifier.svm();
var classifier2010 = ee.Classifier.randomForest({
numberOfTrees: 10,
});
var classifier2015 = ee.Classifier.randomForest({
numberOfTrees: 10,
});
// Test the classifiers' accuracy. (data, y, X)
var trainingClassifier2010 = classifier2010.train(training2010, 'Class', bands2010);
var validation2010 = testing2010.classify(trainingClassifier2010);
var errorMatrix2010 = validation2010.errorMatrix('Class', 'classification');
print('2010 Error Matrix:', errorMatrix2010);
print('2010 Total accuracy:', errorMatrix2010.accuracy());
print('2010 Consumer\'s accuracy (rows):', errorMatrix2010.consumersAccuracy());
print('2010 Producer\'s accuracy (columns):', errorMatrix2010.producersAccuracy());
var trainingClassifier2015 = classifier2015.train(training2015, 'Class', bands2015);
var validation2015 = testing2015.classify(trainingClassifier2015);
var errorMatrix2015 = validation2015.errorMatrix('Class', 'classification');
print('2015 Error Matrix:', errorMatrix2015);
print('2015 Total accuracy:', errorMatrix2015.accuracy());
print('2015 Consumer\'s accuracy (rows):', errorMatrix2015.consumersAccuracy());
print('2015 Producer\'s accuracy (columns):', errorMatrix2015.producersAccuracy());
// Retrain the classifiers using the full dataset.
var fullClassifier2010 = classifier2010.train(regionsOfInterest2010, 'Class', bands2010);
var fullClassifier2015 = classifier2015.train(regionsOfInterest2015, 'Class', bands2015);
// Classify the images.
var classified2010 = clipped2010.classify(fullClassifier2010);
var classified2015 = clipped2015.classify(fullClassifier2015);
// Create a palette to display the classes.
var palette =['c9c0bf', '435ebf', 'EEE8AA',
'006400'];
//////////////////////////
// Calculate fallowed land
//////////////////////////
// I define fallowed land as land converted from vegetation (3) to bare soil (2).
var fallowedBinary = classified2010.eq(3).and(classified2015.eq(2));
// Calculate fallowed area by pixel (0 if pixel was not fallowed)
var areaImageSqM = ee.Image.pixelArea()
.clip(centralValley);
var areaImageSqKm = areaImageSqM.multiply(0.000001);
var fallowedArea = fallowedBinary.multiply(areaImageSqKm);
// Calculate total fallowed area in square kilometers. 200 meters is the arbitrary spatial
// resolution at which we're performing the computation because apparently it needed one.
var totalFallowedArea = fallowedArea.reduceRegion({reducer: ee.Reducer.sum(),
geometry: centralValley,
scale: 200});
print('Total fallowed area, sq km:', totalFallowedArea);
var totalCVArea = areaImageSqKm.reduceRegion({reducer: ee.Reducer.sum(),
geometry: centralValley,
scale: 200});
print('Total area of the Central Valley, sq km:', totalCVArea);
var vegetatedBinary2010 = classified2010.eq(3);
var vegetatedArea2010 = vegetatedBinary2010.multiply(areaImageSqKm);
var totalVegetatedArea2010 = vegetatedArea2010.reduceRegion({reducer: ee.Reducer.sum(),
geometry: centralValley,
scale: 200});
print('Total 2010 vegetated area, sq km:', totalVegetatedArea2010);
var vegetatedBinary2015 = classified2015.eq(3);
var vegetatedArea2015 = vegetatedBinary2015.multiply(areaImageSqKm);
var totalVegetatedArea2015 = vegetatedArea2015.reduceRegion({reducer: ee.Reducer.sum(),
geometry: centralValley,
scale: 200});
print('Total 2015 vegetated area, sq km:', totalVegetatedArea2015);
// Display.
// Map.addLayer(clipped2015, vizParams2015);
// Map.addLayer(classified2010, {min: 0, max: 3, palette: palette});
// Map.addLayer(classified2015, {min: 0, max: 3, palette: palette});
Map.addLayer(fallowedArea);
Map.setCenter(-120.959, 37.571, 7);