-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsampling.py
182 lines (147 loc) · 7.15 KB
/
sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
"""
===========================================================================
Sampling techniques using KDD Cup 1999 IDS dataset
===========================================================================
The following examples demonstrate various sampling techniques for a dataset
in which classes are extremely imbalanced with heavily skewed features
"""
import sys
from contextlib import contextmanager
import time
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import PowerTransformer, QuantileTransformer
from sklearn import preprocessing
from imblearn.over_sampling import RandomOverSampler, ADASYN, SMOTE, BorderlineSMOTE, SVMSMOTE, SMOTENC
from xgboost import XGBClassifier
from sklearn.model_selection import StratifiedKFold, cross_val_predict, cross_val_score
from collections import OrderedDict
from filehandler import Filehandler
from dataset import KDDCup1999
from visualize import Visualize
@contextmanager
def timer(title):
t0 = time.time()
yield
print('{} - done in {:.0f}s'.format(title, time.time() - t0))
class Original:
def fit_resample(self, x, y):
return x, y
class Model:
def __init__(self):
self.enabled = False
self.X_train = None
self.y_train = None
self.random_state = 20
self.predictions = None
self.base = {'model': None,
'stext': None,
'scores': None,
'cm': None}
def fit(self, x, y):
self.base['model'].fit(x, y)
def predict(self, x, y):
return cross_val_predict(self.base['model'], x, y, cv=10)
class XgboostClf(Model):
def __init__(self):
Model.__init__(self)
self.base['stext'] = 'XGC'
self.base['model'] = XGBClassifier(n_estimators=100, random_state=self.random_state)
class Sampling:
def __init__(self):
self.logfile = None
self.gettrace = getattr(sys, 'gettrace', None)
self.original_stdout = sys.stdout
self.timestr = time.strftime("%Y%m%d-%H%M%S")
self.log_file()
print(__doc__)
self.filehandler = Filehandler()
self.ds = KDDCup1999()
self.visualize = Visualize()
self.random_state = 20
self.X = None
self.y = None
self.full = None
# RF Feature selected plus sparse cols
self.cols = ['count', 'diff_srv_rate', 'src_bytes', 'dst_host_srv_count', 'flag', 'dst_bytes', 'serror_rate',
'dst_host_diff_srv_rate', 'service', 'dst_host_count', 'dst_host_srv_diff_host_rate', 'logged_in',
'protocol_type', 'dst_host_same_src_port_rate', 'hot', 'srv_count', 'wrong_fragment',
'num_compromised', 'rerror_rate', 'srv_diff_host_rate', 'urgent', 'num_failed_logins',
'root_shell', 'su_attempted', 'num_root', 'num_file_creations', 'num_shells', 'num_access_files',
'is_guest_login']
with timer('\nLoading dataset'):
self.load_data()
with timer('\nScaling'):
# Sampling options
for sampler in (Original(),
RandomOverSampler(),
SMOTE(random_state=self.random_state),
ADASYN(random_state=self.random_state),
BorderlineSMOTE(random_state=self.random_state, kind='borderline-1')):
self.X = self.full.loc[:, self.cols]
self.X['target'] = self.full['target']
print('X shape with selected features and binary - ', self.X.shape)
self.X = pd.get_dummies(data=self.X, columns=['protocol_type', 'service', 'flag'])
print('X shape after encoding categoricals - ', self.X.shape)
# Re-sample based on attack_category labels
res_x = pd.DataFrame()
res_x, res_y_attack_category, title = self.sample(sampler, self.X, self.full['attack_category'])
res_y_target = res_x['target'] # Grab target as y from resampled x set
res_x.drop(columns=['target'], inplace=True)
print('X shape after sampling and removing target - ', res_x.shape)
print('y shape with attack_category after resample - ', res_y_attack_category.shape)
print(res_y_attack_category.value_counts())
res_y_attack_category.value_counts().plot(kind='bar', title=title + ' - Resampled Count (attack_category)')
plt.show()
print('y shape with target after resample - ', res_y_target.shape)
# Scale after resampling
qt = QuantileTransformer(output_distribution='normal')
res_x = qt.fit_transform(res_x)
print('X shape after scaling - ', res_x.shape)
# Score on attack_category multi-class
self.model_and_score(res_x, res_y_attack_category, title, 'attack_category')
# Score on binary target
self.model_and_score(res_x, res_y_target, title, 'target')
self.log_file()
print('Finished')
def log_file(self):
if self.gettrace is None:
pass
elif self.gettrace():
pass
else:
if self.logfile:
sys.stdout = self.original_stdout
self.logfile.close()
self.logfile = False
else:
# Redirect stdout to file for logging if not in debug mode
self.logfile = open('logs/{}_{}_stdout.txt'.format(self.__class__.__name__, self.timestr), 'w')
sys.stdout = self.logfile
def load_data(self):
self.ds.dataset = self.filehandler.read_csv(self.ds.config['path'], self.ds.config['file'] + '_processed')
self.ds.target = self.filehandler.read_csv(self.ds.config['path'], self.ds.config['file'] + '_target')
self.full = pd.concat([self.ds.dataset, self.ds.target], axis=1)
self.ds.shape()
self.ds.row_count_by_target('attack_category')
def set_y(self, label):
self.y = self.full[label]
def sample(self, sampler, X, y):
title = sampler.__class__.__name__
res_x, res_y = sampler.fit_resample(X, y)
if isinstance(res_x, np.ndarray):
res_x = pd.DataFrame(res_x, columns=X.columns)
if isinstance(res_y, np.ndarray):
res_y = pd.Series(res_y)
print('Shape after sampling with {} - x {}, y {}'.format(title, res_x.shape, res_y.shape))
return res_x, res_y, title
def model_and_score(self, X, y, title, label):
clf = XGBClassifier(n_estimators=50, random_state=self.random_state)
kfold = StratifiedKFold(n_splits=5, random_state=self.random_state)
results = cross_val_score(clf, X, y, cv=kfold)
y_pred = cross_val_predict(clf, X, y, cv=5)
print('{} - {} - XGBoost Accuracy: {:.2f}% (+/- {:.2f}'.format(title, label, results.mean() * 100,
results.std() * 100))
self.visualize.confusion_matrix(y, y_pred, '{} - {} - Label {}'.format(title, clf.__class__.__name__, label))
sampling = Sampling()