Tcomb port for Python 3. It provides a means to apply runtime type checking.
pip install pycomb
from pycomb import combinators
# A simple string
MyStringType = combinators.String
s1 = combinators.String('hello') # This IS a 'str' object
s2 = combinators.String(10) # This will fail
# A list that contains only strings
ListOfStrings = combinators.list(combinators.String)
l1 = ListOfStrings(['1', '2', '3']) # This IS a native tuple
l1 = ListOfStrings(['1', '2', 3]) # This will fail
# Structured data
User = combinators.struct(
{
'name': combinators.String,
'age': combinators.Int,
'city': combinators.maybe(combinators.String)
}
)
my_user = User({'name': 'John Burns', 'age': 30}) # This IS a dict
my_user2 = User({'name': 'John Burns', 'age': '30'}) # This will fail
my_user3 = User({'name': 'John Burns', 'age': 30, 'city': 'New York'}) # This IS a dict
# Subtypes
SmallString = combinators.subtype(
combinators.String,
lambda d: len(d) <= 10) # Strings shorter than 11 characters
SmallString('12345678901') # This will fail
SmallString('12345') # This IS a 'str' object
# Constants
john_data = {'name': 'John'}
John = combinators.constant(john_data, name='JohnConstant')
John({'name': 'John'})
John({'name': 'Jack'}) # Error on JohnConstant: expected JohnConstant but was dict
# Regexp with groups
import re
def name_condition(d):
return d in ('John', 'Jack')
def age_condition(d):
return int(d) > 0
Name = combinators.subtype(combinators.String, name_condition, name='Name')
Age = combinators.subtype(combinators.String, age_condition, name='Age')
NameAndAge = combinators.regexp_group('(\w+) +(-?[0-9]+)', Name, Age, name='NameAndAge')
NameAndAge('John 32') # Ok
NameAndAge('John 3x') # Error on NameAndAge: expected NameAndAge but was str
NameAndAge('John -32') # Error on NameAndAge[1]: expected Age but was str
NameAndAge('WRONG 32') # Error on NameAndAge[0]: expected Name but was str
The validation procedure runs within a context that controls:
- The behavior in case of error
- The production mode: if active, no such error is raised during validation
Context Examples
from pycomb import combinators, context
# Example of production mode
ListOfNumbers = combinators.list(combinators.Number, 'ListOfNumbers')
production_ctx = context.create(production_mode=True)
numbers = ListOfNumbers([1, 2, 'hello'], ctx=production_ctx) # This will NOT fail
# Example of custom behavior in case of error
class MyObserver(context.ValidationErrorObserver):
def on_error(self, ctx, expected_type, found_type):
print('Expected {}, got {}'.format(expected_type, found_type))
ListOfNumbers = combinators.list(combinators.Number, 'ListOfNumbers')
notification_ctx = context.create(validation_error_observer=MyObserver())
numbers = ListOfNumbers([1, 2, 'hello'], ctx=production_ctx) # This will NOT fail
# Expected output:
# > Expected Int or Float, got <class 'str'>
It is possible to wrap functions in order to protect the input parameters, or ensure the type of its return value
Decorators example
from pycomb import combinators
# Example of input parameters check
@combinators.function(
combinators.String, combinators.Int,
c=combinators.Float, d=combinators.list(combinators.Int))
def f(a, b, c=None, d=None):
pass
f('John', 1, c=1.0, d=[3, 4]) # OK
f(1, 1, c=1.0, d=[3, 4]) # This will fail
# Example of output check
@returning(cmb.subtype(cmb.String, lambda d: len(d) < 10))
def f(n):
return ' ' * n
f(3) # OK
f(10) # This will fail
More types are supported, such as:
- Unions
- Intersections
- Functions
- Enums
- ...
All the base types have a default example field. Please read the test code to find more examples.