-
-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathbooks.html
416 lines (377 loc) · 22 KB
/
books.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="generator" content="Docutils 0.17.1: http://docutils.sourceforge.net/" />
<title>Books And Videos — IPython</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css" />
<link rel="stylesheet" type="text/css" href="_static/agogo.css" />
<link rel="stylesheet" href="_static/ipython.css" type="text/css" />
<script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
<script src="_static/jquery.js"></script>
<script src="_static/underscore.js"></script>
<script src="_static/doctools.js"></script>
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="Citing IPython" href="citing.html" />
<link rel="prev" title="Jupyter and the future of IPython" href="index.html" />
</head><body>
<div class="header-wrapper">
<div class="header">
<div class="logo"><a href="index.html">
<img class="logo" src="_static/IPy_header.png" alt="Logo"/>
</a></div>
<div class="rel">
<a href="https://jupyter.readthedocs.io/en/latest/install.html" target="_blank">Install</a> ·
<a href="documentation.html">Documentation</a> ·
<a href="project.html">Project</a> ·
<a href="https://jupyter.org/" target="_blank">Jupyter</a> ·
<a href="news.html">News</a> ·
<a href="citing.html">Cite</a> ·
<a href="donate.html">Donate</a> ·
<a href="#">Books</a>
</div>
</div>
</div>
<div class="content-wrapper">
<div class="content">
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<div class="sidebarblock">
<div id="cse-search-form" style="width: 100%;">Loading</div>
<script src="https://www.google.com/jsapi" type="text/javascript"></script>
<script type="text/javascript">
google.load('search', '1', {language : 'en'});
google.setOnLoadCallback(function() {
var customSearchControl = new google.search.CustomSearchControl(
'017950022472296044740:wfr9nyfshwo');
customSearchControl.setResultSetSize(google.search.Search.FILTERED_CSE_RESULTSET);
var options = new google.search.DrawOptions();
options.enableSearchboxOnly("searchresults.html");
customSearchControl.draw('cse-search-form', options);
}, true);
</script>
<link rel="stylesheet" href="https://www.google.com/cse/style/look/default.css" type="text/css" /> <style type="text/css">
input.gsc-input {
border-color: #BCCDF0;
}
input.gsc-search-button {
border-color: #666666;
background-color: #CECECE;
padding: 0;
}
div.sphinxsidebar input[type="text"] {
width: 100%;
}
div.sphinxsidebar input[type="submit"] {
width: 100%;
}
</style>
</div>
<div class="sidebarblock">
<h3>JupyterCon</h3>
<a href="http://jupytercon.com">
<img src="_static/jupytercon-logo.svg" width="180px" alt="JupyterCon 2017">
</a>
</div>
<div class="sidebarblock">
<h3>Notebook Viewer</h3>
Share your notebooks
<div class="nbviewer-thm-random">
<script src="_static/nbviewer_thm.js"></script>
<script type="text/javascript">
nbviewer_random_thumbnail();
</script>
</div>
</div>
<div class="sidebarblock">
<h3>Community</h3>
<ul class="simple">
<li><a class="reference external" href="http://stackoverflow.com/questions/tagged/ipython">
Stack Overflow</a></li>
<li><a class="reference external" href="https://mail.python.org/mailman/listinfo/ipython-dev">
Mailing list</a></li>
<li><a class="reference external" href="https://github.com/ipython/ipython/issues">
File a bug</a></li>
<li><a class="reference external" href="http://www.reddit.com/r/IPython">
Reddit</a></li>
</ul>
</div>
<div class="sidebarblock">
<h3>For developers</h3>
<ul class="simple">
<li><a class="reference external" href="https://mail.python.org/mailman/listinfo/ipython-dev">Mailing list</a></li>
<li><a class="reference external" href="https://gitter.im/ipython/ipython">
Development Chat Room</a></li>
<li><a class="reference external"
href="https://github.com/ipython/ipython/wiki/Dev:-Index">Development information</a></li>
<li><a class="reference external" href="http://travis-ci.org/#!/ipython/ipython">
Travis CI</a></li>
<li><a class="reference external" href="https://github.com/ipython/ipython/wiki">Wiki</a></li>
</ul>
</div>
<div class="sidebarblock">
<h3>Book</h3>
<a href="books.html"><img
title="Packt Publishing donates a portion of the proceeds from this book to
support IPython's development." width="160" height="200" id="sidebar-book-cover"
style="margin-bottom: 10px;"></a>
<script language="javascript">
// most recent at the end
var urls = [
"_static/ipython-book.jpg",
"_static/learning-jupyter-book.png",
"_static/mastering-ipython-book.png",
"_static/jupyter-notebook-for-all-I.jpg",
"_static/jupyter-notebook-for-all-II.jpg",
"_static/jupyter-in-depth.png",
"_static/jupyter-for-ds.png",
"_static/ipython-cookbook-2nd.png",
]
function pick(){
var len = urls.length;
var num = Math.floor(Math.sqrt(Math.random()*len*len));
return urls[num];
}
function repick(){
$("#sidebar-book-cover").attr("src", pick());
}
window.onload = repick ;
var seconds = 1000;
setInterval(repick, 60*seconds)
</script>
</div>
<div class="sidebarblock">
<div class="tile" id="donate">
<h4>Support IPython</h4>
<!--This relies on some CSS & JS which is added in the _templates folder-->
<a style="background: #34677c;
border-radius:0px 0px 0px 0px;
font-weight:normal;
font-family:Arial, Helvetica, sans-serif;
border:none;
box-shadow:none;
left: 50%;
margin-left:-72.5px; margin-top: 1em; margin-bottom: 1em;
clear: both; display: block;
width:145px; height:45px;
line-height:2.8;
position:relative;
font-size:16px;
text-align:center;
cursor:pointer;
color:#fff;
text-decoration: none;
z-index:1"
href="https://numfocus.salsalabs.org/donate-to-ipython/index.html">Donate Now</a>
<a href="donate.html">Find out more...</a>
</div>
</div>
</div>
</div>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<section id="books-and-videos">
<h1>Books And Videos<a class="headerlink" href="#books-and-videos" title="Permalink to this headline">¶</a></h1>
<section id="ipython-interactive-computing-and-visualization-cookbook-second-edition">
<h2>IPython Interactive Computing and Visualization Cookbook, Second Edition<a class="headerlink" href="#ipython-interactive-computing-and-visualization-cookbook-second-edition" title="Permalink to this headline">¶</a></h2>
<a class="reference external image-reference" href="_static/ipython-cookbook-2nd.png"><img alt="IPython Cookbook, Second Edition, by Cyrille Rossant" src="_images/ipython-cookbook-2nd.png" style="width: 200px;" /></a>
<ul class="simple">
<li><p><a class="reference external" href="http://ipython-books.github.io/">IPython Interactive Computing and Visualization Cookbook, Second Edition</a></p></li>
<li><p>By <a class="reference external" href="http://cyrille.rossant.net">Cyrille Rossant</a></p></li>
<li><p>548 pages</p></li>
<li><p>Packt Publishing</p></li>
<li><p>January 2018</p></li>
</ul>
<p>Python is one of the leading open source platforms for data science and numerical computing. IPython and the associated Jupyter Notebook offer efficient interfaces to Python for data analysis and interactive visualization, and they constitute an ideal gateway to the platform.</p>
<p>IPython Interactive Computing and Visualization Cookbook, Second Edition contains many ready-to-use, focused recipes for high-performance scientific computing and data analysis, from the latest IPython/Jupyter features to the most advanced tricks, to help you write better and faster code. You will apply these state-of-the-art methods to various real-world examples, illustrating topics in applied mathematics, scientific modeling, and machine learning.</p>
<p>The first part of the book covers programming techniques: code quality and reproducibility, code optimization, high-performance computing through just-in-time compilation, parallel computing, and graphics card programming. The second part tackles data science, statistics, machine learning, signal and image processing, dynamical systems, and pure and applied mathematics.</p>
</section>
<section id="jupyter-for-data-science">
<h2>Jupyter for Data Science<a class="headerlink" href="#jupyter-for-data-science" title="Permalink to this headline">¶</a></h2>
<a class="reference external image-reference" href="_static/jupyter-for-ds.png"><img alt="Jupyter For dataScience" src="_images/jupyter-for-ds.png" style="width: 200px;" /></a>
<ul class="simple">
<li><p><a class="reference external" href="https://www.packtpub.com/big-data-and-business-intelligence/jupyter-data-science">Jupyter for Data Science</a></p></li>
<li><p>By Dan Toomey</p></li>
<li><p>242 pages</p></li>
<li><p>Packt Publishing</p></li>
<li><p>October 2017</p></li>
</ul>
<p>Jupyter Notebook is a web-based environment that enables interactive computing
in notebook documents. It allows you to create documents that contain live code,
equations, and visualizations. This book is a comprehensive guide to getting
started with data science using the popular Jupyter notebook.</p>
<p>If you are familiar with Jupyter notebook and want to learn how to use its
capabilities to perform various data science tasks, this is the book for you!
From data exploration to visualization, this book will take you through every
step of the way in implementing an effective data science pipeline using
Jupyter. You will also see how you can utilize Jupyter’s features to share your
documents and codes with your colleagues. The book also explains how Python 3,
R, and Julia can be integrated with Jupyter for various data science tasks.</p>
<p>By the end of this book, you will comfortably leverage the power of Jupyter to
perform various tasks in data science successfully.</p>
</section>
<section id="jupyter-in-depth">
<h2>Jupyter In Depth<a class="headerlink" href="#jupyter-in-depth" title="Permalink to this headline">¶</a></h2>
<a class="reference external image-reference" href="_static/jupyter-in-depth.png"><img alt="jupyter-in-depth" src="_images/jupyter-in-depth.png" style="width: 200px;" /></a>
<ul class="simple">
<li><p><a class="reference external" href="https://www.packtpub.com/big-data-and-business-intelligence/jupyter-depth-video">Jupyter In Depth</a></p></li>
<li><p>Jesse Bacon Thursday, August 31, 2017</p></li>
<li><p>1 hour and 43 minutes</p></li>
<li><p>Packt Publishing</p></li>
<li><p>August 2017</p></li>
</ul>
<p>Jupyter has emerged as a popular tool for code exposition and the sharing of research artefacts. It has interactive display capabilities and the pluggable kernel system allows data scientists to switch back and forth between multiple programming languages.</p>
<p>The course will walk you through the core modules and standard capabilities of the console, client, and notebook server. By exploring the Python language, you will be able to get starter projects for configurations management, file system monitoring, and encrypted backup solutions for safeguarding their data. In the final Sections, you will be able to build dashboards in a Jupyter notebook to report back information about the project and the status of various Jupyter components.</p>
</section>
<section id="jupyter-notebook-for-all-part-ii-video">
<h2>Jupyter Notebook for All - Part II [Video]<a class="headerlink" href="#jupyter-notebook-for-all-part-ii-video" title="Permalink to this headline">¶</a></h2>
<a class="reference external image-reference" href="_static/jupyter-notebook-for-all-II.jpg"><img alt="Jupyter Notebook for All - Part II" src="_images/jupyter-notebook-for-all-II.jpg" style="width: 200px;" /></a>
<ul class="simple">
<li><p><a class="reference external" href="https://www.packtpub.com/big-data-and-business-intelligence/jupyter-notebook-all-%E2%80%93-part-ii-video">Jupyter Notebook for All - Part II</a></p></li>
<li><p>By Dan Toomey</p></li>
<li><p>1 hour and 14 minutes</p></li>
<li><p>Packt Publishing</p></li>
<li><p>March 2017</p></li>
</ul>
<p>Jupyter Notebook is a web-based environment that enables interactive computing
in notebook documents. It allows you to create and share documents that contain
live code, equations, visualizations, and explanatory text. The Jupyter Notebook
system is extensively used in domains such as data cleaning and transformation,
numerical simulation, statistical modeling, machine learning, and much more.
This tutorial starts with a detailed overview of the Jupyter Notebook system and
its installation in different environments. Next you will learn to integrate the
Jupyter system with different programming languages such as R, Python,
JavaScript, and Julia; further, you’ll explore the various versions and packages
that are compatible with the Notebook system. Moving ahead, you’ll master
interactive widgets, namespaces, and working with Jupyter in multiuser mode.
Towards the end, you will use Jupyter with a big dataset and will apply all the
functionalities learned throughout the video.</p>
</section>
<section id="jupyter-notebook-for-all-part-i-video">
<h2>Jupyter Notebook for All - Part I [Video]<a class="headerlink" href="#jupyter-notebook-for-all-part-i-video" title="Permalink to this headline">¶</a></h2>
<a class="reference external image-reference" href="_static/jupyter-notebook-for-all-I.jpg"><img alt="Jupyter Notebook for All - Part I" src="_images/jupyter-notebook-for-all-I.jpg" style="width: 200px;" /></a>
<ul class="simple">
<li><p><a class="reference external" href="https://www.packtpub.com/big-data-and-business-intelligence/jupyter-notebook-all-%E2%80%93-part-i-video">Jupyter Notebook for All - Part I</a></p></li>
<li><p>By Dan Toomey</p></li>
<li><p>1 hour 23 minutes</p></li>
<li><p>Packt Publishing</p></li>
<li><p>March 2017</p></li>
</ul>
<p>Jupyter Notebook is a web-based environment that enables interactive computing
in notebook documents. It allows you to create and share documents that contain
live code, equations, visualizations, and explanatory text. The Jupyter Notebook
system is extensively used in domains such as data cleaning and transformation,
numerical simulation, statistical modeling, machine learning, and much more.
This tutorial starts with a detailed overview of the Jupyter Notebook system and
its installation in different environments. Next you will learn to integrate the
Jupyter system with different programming languages such as R, Python,
JavaScript, and Julia; further, you’ll explore the various versions and packages
that are compatible with the Notebook system. Moving ahead, you’ll master
interactive widgets, namespaces, and working with Jupyter in multiuser mode.
Towards the end, you will use Jupyter with a big dataset and will apply all the
functionalities learned throughout the video.</p>
</section>
<section id="learning-jupyter">
<h2>Learning Jupyter<a class="headerlink" href="#learning-jupyter" title="Permalink to this headline">¶</a></h2>
<a class="reference external image-reference" href="_static/learning-jupyter-book.png"><img alt="Learning Jupyter" src="_images/learning-jupyter-book.png" style="width: 200px;" /></a>
<ul class="simple">
<li><p><a class="reference external" href="https://www.packtpub.com/big-data-and-business-intelligence/learning-jupyter">Learning Jupyter</a></p></li>
<li><p>By Dan Toomey</p></li>
<li><p>238 Pages</p></li>
<li><p>Packt Publishing</p></li>
<li><p>November 2016</p></li>
</ul>
<p>Jupyter Notebook is a web-based environment that enables interactive computing
in notebook documents. It allows you to create and share documents that contain
live code, equations, visualizations, and explanatory text. The Jupyter
Notebook system is extensively used in domains such as data cleaning and
transformation, numerical simulation, statistical modeling, machine learning,
and much more.</p>
<p>This book starts with a detailed overview of the Jupyter Notebook system and
its installation in different environments. Next we’ll help you will learn to
integrate Jupyter system with different programming languages such as R,
Python, JavaScript, and Julia and explore the various versions and packages
that are compatible with the Notebook system. Moving ahead, you master
interactive widgets, namespaces, and working with Jupyter in a multiuser mode.</p>
<p>Towards the end, you will use Jupyter with a big data set and will apply all
the functionalities learned throughout the book.</p>
</section>
<section id="mastering-ipython-4-0">
<h2>Mastering IPython 4.0<a class="headerlink" href="#mastering-ipython-4-0" title="Permalink to this headline">¶</a></h2>
<a class="reference external image-reference" href="_static/mastering-ipython-book.png"><img alt="Mastering IPython" src="_images/mastering-ipython-book.png" style="width: 200px;" /></a>
<ul class="simple">
<li><p><a class="reference external" href="https://www.packtpub.com/big-data-and-business-intelligence/mastering-ipython-40">Mastering IPython 4.0</a></p></li>
<li><p>by <a class="reference external" href="https://www.packtpub.com/books/info/authors/thomas-bitterman">Thomas Bitterman</a></p></li>
<li><p>382 pages</p></li>
<li><p>Packt Publishing</p></li>
<li><p>May 2016</p></li>
<li><p>Code available under MIT License <a class="reference external" href="https://github.com/PacktPublishing/Mastering-IPython-4">on GitHub</a></p></li>
</ul>
<p>This book will get IPython developers up to date with the latest advancements
in IPython and dive deep into interactive computing with IPython. This an
advanced guide on interactive and parallel computing with IPython will explore
advanced visualizations and high-performance computing with IPython in detail.</p>
<p>You will quickly brush up your knowledge of IPython kernels and wrapper
kernels, then we’ll move to advanced concepts such as testing, Sphinx, JS
events, interactive work, and the ZMQ cluster. The book will cover topics such
as IPython Console Lexer, advanced configuration, and third-party tools.</p>
<p>By the end of this book, you will be able to use IPython for interactive and
parallel computing in a high-performance computing environment.</p>
</section>
<section id="ipython-cookbook">
<h2>IPython Cookbook<a class="headerlink" href="#ipython-cookbook" title="Permalink to this headline">¶</a></h2>
<a class="reference external image-reference" href="_static/ipython-cookbook.jpg"><img alt="IPython Cookbook" src="_images/ipython-cookbook.jpg" style="width: 200px;" /></a>
<ul class="simple">
<li><p><a class="reference external" href="http://ipython-books.github.io/cookbook/">IPython Interactive Computing and Visualization Cookbook</a></p></li>
<li><p>by <a class="reference external" href="http://cyrille.rossant.net">Cyrille Rossant</a></p></li>
<li><p>512 pages</p></li>
<li><p>Packt Publishing</p></li>
<li><p>September 25 2014</p></li>
</ul>
<p>This is an advanced-level guide to IPython for data science, and the sequel of
the IPython minibook.</p>
</section>
<section id="ipython-minibook">
<h2>IPython Minibook<a class="headerlink" href="#ipython-minibook" title="Permalink to this headline">¶</a></h2>
<a class="reference external image-reference" href="_static/ipython-book.jpg"><img alt="IPython Minibook" src="_images/ipython-book.jpg" style="width: 200px;" /></a>
<ul class="simple">
<li><p><a class="reference external" href="http://ipython-books.github.io/minibook/">Learning IPython for Interactive Computing and Data Visualization</a></p></li>
<li><p>by <a class="reference external" href="http://cyrille.rossant.net">Cyrille Rossant</a></p></li>
<li><p>175 pages</p></li>
<li><p>Packt Publishing</p></li>
<li><p>October 25 2015</p></li>
</ul>
<p>This book is a beginner-level introduction to Python for data analysis, covering IPython, the Jupyter Notebook, pandas, NumPy, matplotlib, and many other libraries. There is an introduction to the Python programming language for complete beginners. There are also contents for more advanced users, like parallel computing with IPython and high-performance computing with Numba and Cython.</p>
</section>
<section id="get-your-book-on-this-page">
<h2>Get your Book on this page<a class="headerlink" href="#get-your-book-on-this-page" title="Permalink to this headline">¶</a></h2>
<p>Getting your book on this page will automatically add it on the sidebar.</p>
<p>Thanks for writing about IPython or Jupyter, we would be happy to get a link to
your book on this page, the simplest would be to submit a GitHub Pull Request
against <a class="reference external" href="https://github.com/ipython/ipython-website/blob/master/books.rst">The IPython website repository page</a>. You can
also directly contact us in order to do that for you.</p>
<p>A requirement for a book to be listed on this page is that all the code
examples included in the book are licensed under an OSI-approved license.
Besides, we recommend non-copyleft license such as CC-0.</p>
<p>We reserve the right to refuse or remove any publication at our discretion.</p>
<p>You can get more information by reading our <a class="reference internal" href="books_policy.html#books-policy"><span class="std std-ref">Books Policy</span></a>.</p>
</section>
</section>
<div class="clearer"></div>
</div>
</div>
</div>
</div>
<div class="clearer"></div>
</div>
</div>
<div class="footer-wrapper">
<div class="footer" role="contentinfo">
© Copyright the IPython development team. Python is trademark of the Python Software Foundation.
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 4.5.0.
</div>
</div>
</body>
</html>