-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathTutorial5_BasicAnalytics.html
1586 lines (1577 loc) · 387 KB
/
Tutorial5_BasicAnalytics.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta http-equiv="Content-Style-Type" content="text/css" />
<meta name="generator" content="pandoc" />
<meta name="author" content="DPI R Bootcamp" />
<title>Tutorial 5: Analytics</title>
<style type="text/css">
table.sourceCode, tr.sourceCode, td.lineNumbers, td.sourceCode {
margin: 0; padding: 0; vertical-align: baseline; border: none; }
table.sourceCode { width: 100%; }
td.lineNumbers { text-align: right; padding-right: 4px; padding-left: 4px; color: #aaaaaa; border-right: 1px solid #aaaaaa; }
td.sourceCode { padding-left: 5px; }
code > span.kw { color: #007020; font-weight: bold; }
code > span.dt { color: #902000; }
code > span.dv { color: #40a070; }
code > span.bn { color: #40a070; }
code > span.fl { color: #40a070; }
code > span.ch { color: #4070a0; }
code > span.st { color: #4070a0; }
code > span.co { color: #60a0b0; font-style: italic; }
code > span.ot { color: #007020; }
code > span.al { color: #ff0000; font-weight: bold; }
code > span.fu { color: #06287e; }
code > span.er { color: #ff0000; font-weight: bold; }
</style>
<link href="data:text/css,%2F%2A%20slidy%2Ecss%0D%0A%0D%0A%20%20%20Copyright%20%28c%29%202005%2D2010%20W3C%20%28MIT%2C%20ERCIM%2C%20Keio%29%2C%20All%20Rights%20Reserved%2E%0D%0A%20%20%20W3C%20liability%2C%20trademark%2C%20document%20use%20and%20software%20licensing%0D%0A%20%20%20rules%20apply%2C%20see%3A%0D%0A%0D%0A%20%20%20http%3A%2F%2Fwww%2Ew3%2Eorg%2FConsortium%2FLegal%2Fcopyright%2Ddocuments%0D%0A%20%20%20http%3A%2F%2Fwww%2Ew3%2Eorg%2FConsortium%2FLegal%2Fcopyright%2Dsoftware%0D%0A%2A%2F%0D%0Abody%0D%0A%7B%0D%0A%20%20margin%3A%200%200%200%200%3B%0D%0A%20%20padding%3A%200%200%200%200%3B%0D%0A%20%20width%3A%20100%25%3B%0D%0A%20%20height%3A%20100%25%3B%0D%0A%20%20color%3A%20black%3B%0D%0A%20%20background%2Dcolor%3A%20white%3B%0D%0A%20%20font%2Dfamily%3A%20%22Gill%20Sans%20MT%22%2C%20%22Gill%20Sans%22%2C%20GillSans%2C%20sans%2Dserif%3B%0D%0A%20%20font%2Dsize%3A%2014pt%3B%0D%0A%7D%0D%0A%0D%0Adiv%2Etoolbar%20%7B%0D%0A%20%20position%3A%20fixed%3B%20z%2Dindex%3A%20200%3B%0D%0A%20%20top%3A%20auto%3B%20bottom%3A%200%3B%20left%3A%200%3B%20right%3A%200%3B%0D%0A%20%20height%3A%201%2E2em%3B%20text%2Dalign%3A%20right%3B%0D%0A%20%20padding%2Dleft%3A%201em%3B%0D%0A%20%20padding%2Dright%3A%201em%3B%20%0D%0A%20%20font%2Dsize%3A%2060%25%3B%0D%0A%20%20color%3A%20red%3B%0D%0A%20%20background%2Dcolor%3A%20rgb%28240%2C240%2C240%29%3B%0D%0A%20%20border%2Dtop%3A%20solid%201px%20rgb%28180%2C180%2C180%29%3B%0D%0A%7D%0D%0A%0D%0Adiv%2Etoolbar%20span%2Ecopyright%20%7B%0D%0A%20%20color%3A%20black%3B%0D%0A%20%20margin%2Dleft%3A%200%2E5em%3B%0D%0A%7D%0D%0A%0D%0Adiv%2Einitial%5Fprompt%20%7B%0D%0A%20%20position%3A%20absolute%3B%0D%0A%20%20z%2Dindex%3A%201000%3B%0D%0A%20%20bottom%3A%201%2E2em%3B%0D%0A%20%20width%3A%20100%25%3B%0D%0A%20%20background%2Dcolor%3A%20rgb%28200%2C200%2C200%29%3B%0D%0A%20%20opacity%3A%200%2E35%3B%0D%0A%20%20background%2Dcolor%3A%20rgb%28200%2C200%2C200%2C%200%2E35%29%3B%0D%0A%20%20cursor%3A%20pointer%3B%0D%0A%7D%0D%0A%0D%0Adiv%2Einitial%5Fprompt%20p%2Ehelp%20%7B%0D%0A%20%20text%2Dalign%3A%20center%3B%0D%0A%7D%0D%0A%0D%0Adiv%2Einitial%5Fprompt%20p%2Eclose%20%7B%0D%0A%20%20text%2Dalign%3A%20right%3B%0D%0A%20%20font%2Dstyle%3A%20italic%3B%0D%0A%7D%0D%0A%0D%0Adiv%2Eslidy%5Ftoc%20%7B%0D%0A%20%20position%3A%20absolute%3B%0D%0A%20%20z%2Dindex%3A%20300%3B%0D%0A%20%20width%3A%2060%25%3B%0D%0A%20%20max%2Dwidth%3A%2030em%3B%0D%0A%20%20height%3A%2030em%3B%0D%0A%20%20overflow%3A%20auto%3B%0D%0A%20%20top%3A%20auto%3B%0D%0A%20%20right%3A%20auto%3B%0D%0A%20%20left%3A%204em%3B%0D%0A%20%20bottom%3A%204em%3B%0D%0A%20%20padding%3A%201em%3B%0D%0A%20%20background%3A%20rgb%28240%2C240%2C240%29%3B%0D%0A%20%20border%2Dstyle%3A%20solid%3B%0D%0A%20%20border%2Dwidth%3A%202px%3B%0D%0A%20%20font%2Dsize%3A%2060%25%3B%0D%0A%7D%0D%0A%0D%0Adiv%2Eslidy%5Ftoc%20%2Etoc%5Fheading%20%7B%0D%0A%20%20text%2Dalign%3A%20center%3B%0D%0A%20%20width%3A%20100%25%3B%0D%0A%20%20margin%3A%200%3B%0D%0A%20%20margin%2Dbottom%3A%201em%3B%0D%0A%20%20border%2Dbottom%2Dstyle%3A%20solid%3B%0D%0A%20%20border%2Dbottom%2Dcolor%3A%20rgb%28180%2C180%2C180%29%3B%0D%0A%20%20border%2Dbottom%2Dwidth%3A%201px%3B%0D%0A%7D%0D%0A%0D%0Adiv%2Eslide%20%7B%0D%0A%20%20z%2Dindex%3A%2020%3B%0D%0A%20%20margin%3A%200%200%200%200%3B%0D%0A%20%20padding%2Dtop%3A%200%3B%0D%0A%20%20padding%2Dbottom%3A%200%3B%0D%0A%20%20padding%2Dleft%3A%2020px%3B%0D%0A%20%20padding%2Dright%3A%2020px%3B%0D%0A%20%20border%2Dwidth%3A%200%3B%0D%0A%20%20clear%3A%20both%3B%0D%0A%20%20top%3A%200%3B%0D%0A%20%20bottom%3A%200%3B%0D%0A%20%20left%3A%200%3B%0D%0A%20%20right%3A%200%3B%0D%0A%20%20line%2Dheight%3A%20120%25%3B%0D%0A%20%20background%2Dcolor%3A%20transparent%3B%0D%0A%7D%0D%0A%0D%0Adiv%2Ebackground%20%7B%0D%0A%20%20display%3A%20none%3B%0D%0A%7D%0D%0A%0D%0Adiv%2Ehandout%20%7B%0D%0A%20%20margin%2Dleft%3A%2020px%3B%0D%0A%20%20margin%2Dright%3A%2020px%3B%0D%0A%7D%0D%0A%0D%0Adiv%2Eslide%2Etitlepage%20%7B%0D%0A%20%20text%2Dalign%3A%20center%3B%0D%0A%7D%0D%0A%0D%0Adiv%2Eslide%2Etitlepage%20h1%20%7B%0D%0A%20%20padding%2Dtop%3A%2010%25%3B%0D%0A%20%20margin%2Dright%3A%200%3B%0D%0A%7D%0D%0A%0D%0Adiv%2Eslide%20h1%20%7B%0D%0A%20%20padding%2Dleft%3A%200%3B%0D%0A%20%20padding%2Dright%3A%2020pt%3B%0D%0A%20%20padding%2Dtop%3A%204pt%3B%0D%0A%20%20padding%2Dbottom%3A%204pt%3B%0D%0A%20%20margin%2Dtop%3A%200%3B%0D%0A%20%20margin%2Dleft%3A%200%3B%0D%0A%20%20margin%2Dright%3A%2060pt%3B%0D%0A%20%20margin%2Dbottom%3A%200%2E5em%3B%0D%0A%20%20display%3A%20block%3B%20%0D%0A%20%20font%2Dsize%3A%20160%25%3B%0D%0A%20%20line%2Dheight%3A%201%2E2em%3B%0D%0A%20%20background%3A%20transparent%3B%0D%0A%7D%0D%0A%0D%0Adiv%2Etoc%20%7B%0D%0A%20%20position%3A%20absolute%3B%0D%0A%20%20top%3A%20auto%3B%0D%0A%20%20bottom%3A%204em%3B%0D%0A%20%20left%3A%204em%3B%0D%0A%20%20right%3A%20auto%3B%0D%0A%20%20width%3A%2060%25%3B%0D%0A%20%20max%2Dwidth%3A%2030em%3B%0D%0A%20%20height%3A%2030em%3B%0D%0A%20%20border%3A%20solid%20thin%20black%3B%0D%0A%20%20padding%3A%201em%3B%0D%0A%20%20background%3A%20rgb%28240%2C240%2C240%29%3B%0D%0A%20%20color%3A%20black%3B%0D%0A%20%20z%2Dindex%3A%20300%3B%0D%0A%20%20overflow%3A%20auto%3B%0D%0A%20%20display%3A%20block%3B%0D%0A%20%20visibility%3A%20visible%3B%0D%0A%7D%0D%0A%0D%0Adiv%2Etoc%2Dheading%20%7B%0D%0A%20%20width%3A%20100%25%3B%0D%0A%20%20border%2Dbottom%3A%20solid%201px%20rgb%28180%2C180%2C180%29%3B%0D%0A%20%20margin%2Dbottom%3A%201em%3B%0D%0A%20%20text%2Dalign%3A%20center%3B%0D%0A%7D%0D%0A%0D%0Aimg%20%7B%0D%0A%20%20image%2Drendering%3A%20optimize%2Dquality%3B%0D%0A%7D%0D%0A%0D%0Apre%20%7B%0D%0A%20font%2Dsize%3A%2080%25%3B%0D%0A%20font%2Dweight%3A%20bold%3B%0D%0A%20line%2Dheight%3A%20120%25%3B%0D%0A%20padding%2Dtop%3A%200%2E2em%3B%0D%0A%20padding%2Dbottom%3A%200%2E2em%3B%0D%0A%20padding%2Dleft%3A%201em%3B%0D%0A%20padding%2Dright%3A%201em%3B%0D%0A%20border%2Dstyle%3A%20solid%3B%0D%0A%20border%2Dleft%2Dwidth%3A%201em%3B%0D%0A%20border%2Dtop%2Dwidth%3A%20thin%3B%0D%0A%20border%2Dright%2Dwidth%3A%20thin%3B%0D%0A%20border%2Dbottom%2Dwidth%3A%20thin%3B%0D%0A%20border%2Dcolor%3A%20%2395ABD0%3B%0D%0A%20color%3A%20%2300428C%3B%0D%0A%20background%2Dcolor%3A%20%23E4E5E7%3B%0D%0A%7D%0D%0A%0D%0Ali%20pre%20%7B%20margin%2Dleft%3A%200%3B%20%7D%0D%0A%0D%0Ablockquote%20%7B%20font%2Dstyle%3A%20italic%20%7D%0D%0A%0D%0Aimg%20%7B%20background%2Dcolor%3A%20transparent%20%7D%0D%0A%0D%0Ap%2Ecopyright%20%7B%20font%2Dsize%3A%20smaller%20%7D%0D%0A%0D%0A%2Ecenter%20%7B%20text%2Dalign%3A%20center%20%7D%0D%0A%2Efootnote%20%7B%20font%2Dsize%3A%20smaller%3B%20margin%2Dleft%3A%202em%3B%20%7D%0D%0A%0D%0Aa%20img%20%7B%20border%2Dwidth%3A%200%3B%20border%2Dstyle%3A%20none%20%7D%0D%0A%0D%0Aa%3Avisited%20%7B%20color%3A%20navy%20%7D%0D%0Aa%3Alink%20%7B%20color%3A%20navy%20%7D%0D%0Aa%3Ahover%20%7B%20color%3A%20red%3B%20text%2Ddecoration%3A%20underline%20%7D%0D%0Aa%3Aactive%20%7B%20color%3A%20red%3B%20text%2Ddecoration%3A%20underline%20%7D%0D%0A%0D%0Aa%20%7Btext%2Ddecoration%3A%20none%7D%0D%0A%2Enavbar%20a%3Alink%20%7Bcolor%3A%20white%7D%0D%0A%2Enavbar%20a%3Avisited%20%7Bcolor%3A%20yellow%7D%0D%0A%2Enavbar%20a%3Aactive%20%7Bcolor%3A%20red%7D%0D%0A%2Enavbar%20a%3Ahover%20%7Bcolor%3A%20red%7D%0D%0A%0D%0Aul%20%7B%20list%2Dstyle%2Dtype%3A%20square%3B%20%7D%0D%0Aul%20ul%20%7B%20list%2Dstyle%2Dtype%3A%20disc%3B%20%7D%0D%0Aul%20ul%20ul%20%7B%20list%2Dstyle%2Dtype%3A%20circle%3B%20%7D%0D%0Aul%20ul%20ul%20ul%20%7B%20list%2Dstyle%2Dtype%3A%20disc%3B%20%7D%0D%0Ali%20%7B%20margin%2Dleft%3A%200%2E5em%3B%20margin%2Dtop%3A%200%2E5em%3B%20%7D%0D%0Ali%20li%20%7B%20font%2Dsize%3A%2085%25%3B%20font%2Dstyle%3A%20italic%20%7D%0D%0Ali%20li%20li%20%7B%20font%2Dsize%3A%2085%25%3B%20font%2Dstyle%3A%20normal%20%7D%0D%0A%0D%0Adiv%20dt%0D%0A%7B%0D%0A%20%20margin%2Dleft%3A%200%3B%0D%0A%20%20margin%2Dtop%3A%201em%3B%0D%0A%20%20margin%2Dbottom%3A%200%2E5em%3B%0D%0A%20%20font%2Dweight%3A%20bold%3B%0D%0A%7D%0D%0Adiv%20dd%0D%0A%7B%0D%0A%20%20margin%2Dleft%3A%202em%3B%0D%0A%20%20margin%2Dbottom%3A%200%2E5em%3B%0D%0A%7D%0D%0A%0D%0A%0D%0Ap%2Cpre%2Cul%2Col%2Cblockquote%2Ch2%2Ch3%2Ch4%2Ch5%2Ch6%2Cdl%2Ctable%20%7B%0D%0A%20%20margin%2Dleft%3A%201em%3B%0D%0A%20%20margin%2Dright%3A%201em%3B%0D%0A%7D%0D%0A%0D%0Ap%2Esubhead%20%7B%20font%2Dweight%3A%20bold%3B%20margin%2Dtop%3A%202em%3B%20%7D%0D%0A%0D%0A%2Esmaller%20%7B%20font%2Dsize%3A%20smaller%20%7D%0D%0A%2Ebigger%20%7B%20font%2Dsize%3A%20130%25%20%7D%0D%0A%0D%0Atd%2Cth%20%7B%20padding%3A%200%2E2em%20%7D%0D%0A%0D%0Aul%20%7B%0D%0A%20%20margin%3A%200%2E5em%201%2E5em%200%2E5em%201%2E5em%3B%0D%0A%20%20padding%3A%200%3B%0D%0A%7D%0D%0A%0D%0Aol%20%7B%0D%0A%20%20margin%3A%200%2E5em%201%2E5em%200%2E5em%201%2E5em%3B%0D%0A%20%20padding%3A%200%3B%0D%0A%7D%0D%0A%0D%0Aul%20%7B%20list%2Dstyle%2Dtype%3A%20square%3B%20%7D%0D%0Aul%20ul%20%7B%20list%2Dstyle%2Dtype%3A%20disc%3B%20%7D%0D%0Aul%20ul%20ul%20%7B%20list%2Dstyle%2Dtype%3A%20circle%3B%20%7D%0D%0Aul%20ul%20ul%20ul%20%7B%20list%2Dstyle%2Dtype%3A%20disc%3B%20%7D%0D%0A%0D%0Aul%20li%20%7B%20%0D%0A%20%20list%2Dstyle%3A%20square%3B%0D%0A%20%20margin%3A%200%2E1em%200em%200%2E6em%200%3B%0D%0A%20%20padding%3A%200%200%200%200%3B%0D%0A%20%20line%2Dheight%3A%20140%25%3B%0D%0A%7D%0D%0A%0D%0Aol%20li%20%7B%20%0D%0A%20%20margin%3A%200%2E1em%200em%200%2E6em%201%2E5em%3B%0D%0A%20%20padding%3A%200%200%200%200px%3B%0D%0A%20%20line%2Dheight%3A%20140%25%3B%0D%0A%20%20list%2Dstyle%2Dtype%3A%20decimal%3B%0D%0A%7D%0D%0A%0D%0Ali%20ul%20li%20%7B%20%0D%0A%20%20font%2Dsize%3A%2085%25%3B%20%0D%0A%20%20font%2Dstyle%3A%20italic%3B%0D%0A%20%20list%2Dstyle%2Dtype%3A%20disc%3B%0D%0A%20%20background%3A%20transparent%3B%0D%0A%20%20padding%3A%200%200%200%200%3B%0D%0A%7D%0D%0Ali%20li%20ul%20li%20%7B%20%0D%0A%20%20font%2Dsize%3A%2085%25%3B%20%0D%0A%20%20font%2Dstyle%3A%20normal%3B%0D%0A%20%20list%2Dstyle%2Dtype%3A%20circle%3B%0D%0A%20%20background%3A%20transparent%3B%0D%0A%20%20padding%3A%200%200%200%200%3B%0D%0A%7D%0D%0Ali%20li%20li%20ul%20li%20%7B%0D%0A%20%20list%2Dstyle%2Dtype%3A%20disc%3B%0D%0A%20%20background%3A%20transparent%3B%0D%0A%20%20padding%3A%200%200%200%200%3B%0D%0A%7D%0D%0A%0D%0Ali%20ol%20li%20%7B%0D%0A%20%20list%2Dstyle%2Dtype%3A%20decimal%3B%0D%0A%7D%0D%0A%0D%0A%0D%0Ali%20li%20ol%20li%20%7B%0D%0A%20%20list%2Dstyle%2Dtype%3A%20decimal%3B%0D%0A%7D%0D%0A%0D%0A%2F%2A%0D%0A%20setting%20class%3D%22outline%20on%20ol%20or%20ul%20makes%20it%20behave%20as%20an%0D%0A%20ouline%20list%20where%20blocklevel%20content%20in%20li%20elements%20is%0D%0A%20hidden%20by%20default%20and%20can%20be%20expanded%20or%20collapsed%20with%0D%0A%20mouse%20click%2E%20Set%20class%3D%22expand%22%20on%20li%20to%20override%20default%0D%0A%2A%2F%0D%0A%0D%0Aol%2Eoutline%20li%3Ahover%20%7B%20cursor%3A%20pointer%20%7D%0D%0Aol%2Eoutline%20li%2Enofold%3Ahover%20%7B%20cursor%3A%20default%20%7D%0D%0A%0D%0Aul%2Eoutline%20li%3Ahover%20%7B%20cursor%3A%20pointer%20%7D%0D%0Aul%2Eoutline%20li%2Enofold%3Ahover%20%7B%20cursor%3A%20default%20%7D%0D%0A%0D%0Aol%2Eoutline%20%7B%20list%2Dstyle%3Adecimal%3B%20%7D%0D%0Aol%2Eoutline%20ol%20%7B%20list%2Dstyle%2Dtype%3Alower%2Dalpha%20%7D%0D%0A%0D%0Aol%2Eoutline%20li%2Enofold%20%7B%0D%0A%20%20padding%3A%200%200%200%2020px%3B%0D%0A%20%20background%3A%20transparent%20url%28data%3Aimage%2Fgif%3Bbase64%2CR0lGODdhCQAJAIACAMzMzOvr%2FywAAAAACQAJAAACD4SPoRvG614Dctb4MEMcFAA7%29%20no%2Drepeat%200px%200%2E5em%3B%0D%0A%7D%0D%0Aol%2Eoutline%20li%2Eunfolded%20%7B%0D%0A%20%20padding%3A%200%200%200%2020px%3B%0D%0A%20%20background%3A%20transparent%20url%28data%3Aimage%2Fgif%3Bbase64%2CR0lGODdhCQAJAKEDAMPD%2F8zMzOvr%2F%2F%2F%2F%2FywAAAAACQAJAAACEYyPoivG614LAlg7ZZbxoR8UADs%3D%29%20no%2Drepeat%200px%200%2E5em%3B%0D%0A%7D%0D%0Aol%2Eoutline%20li%2Efolded%20%7B%0D%0A%20%20padding%3A%200%200%200%2020px%3B%0D%0A%20%20background%3A%20transparent%20url%28data%3Aimage%2Fgif%3Bbase64%2CR0lGODdhCQAJAKEDAMPD%2F8zMzOvr%2F%2F%2F%2F%2FywAAAAACQAJAAACFIyPoiu2sJyCyoF7W3hxz850CFIAADs%3D%29%20no%2Drepeat%200px%200%2E5em%3B%0D%0A%7D%0D%0Aol%2Eoutline%20li%2Eunfolded%3Ahover%20%7B%0D%0A%20%20padding%3A%200%200%200%2020px%3B%0D%0A%20%20background%3A%20transparent%20url%28data%3Aimage%2Fgif%3Bbase64%2CR0lGODdhCQAJAKEDAAAAAAAA%2F8PD%2F%2F%2F%2F%2FywAAAAACQAJAAACEYSPoivG614DIlg7ZZbxoQ8UADs%3D%29%20no%2Drepeat%200px%200%2E5em%3B%0D%0A%7D%0D%0Aol%2Eoutline%20li%2Efolded%3Ahover%20%7B%0D%0A%20%20padding%3A%200%200%200%2020px%3B%0D%0A%20%20background%3A%20transparent%20url%28data%3Aimage%2Fgif%3Bbase64%2CR0lGODdhCQAJAKEDAAAAAAAA%2F8PD%2F%2F%2F%2F%2FywAAAAACQAJAAACFISPoiu2sZyCyoV7G3hxz850CFIAADs%3D%29%20no%2Drepeat%200px%200%2E5em%3B%0D%0A%7D%0D%0A%0D%0Aul%2Eoutline%20li%2Enofold%20%7B%0D%0A%20%20padding%3A%200%200%200%2020px%3B%0D%0A%20%20background%3A%20transparent%20url%28data%3Aimage%2Fgif%3Bbase64%2CR0lGODdhCQAJAIACAMzMzOvr%2FywAAAAACQAJAAACD4SPoRvG614Dctb4MEMcFAA7%29%20no%2Drepeat%200px%200%2E5em%3B%0D%0A%7D%0D%0Aul%2Eoutline%20li%2Eunfolded%20%7B%0D%0A%20%20padding%3A%200%200%200%2020px%3B%0D%0A%20%20background%3A%20transparent%20url%28data%3Aimage%2Fgif%3Bbase64%2CR0lGODdhCQAJAKEDAMPD%2F8zMzOvr%2F%2F%2F%2F%2FywAAAAACQAJAAACEYyPoivG614LAlg7ZZbxoR8UADs%3D%29%20no%2Drepeat%200px%200%2E5em%3B%0D%0A%7D%0D%0Aul%2Eoutline%20li%2Efolded%20%7B%0D%0A%20%20padding%3A%200%200%200%2020px%3B%0D%0A%20%20background%3A%20transparent%20url%28data%3Aimage%2Fgif%3Bbase64%2CR0lGODdhCQAJAKEDAMPD%2F8zMzOvr%2F%2F%2F%2F%2FywAAAAACQAJAAACFIyPoiu2sJyCyoF7W3hxz850CFIAADs%3D%29%20no%2Drepeat%200px%200%2E5em%3B%0D%0A%7D%0D%0Aul%2Eoutline%20li%2Eunfolded%3Ahover%20%7B%0D%0A%20%20padding%3A%200%200%200%2020px%3B%0D%0A%20%20background%3A%20transparent%20url%28data%3Aimage%2Fgif%3Bbase64%2CR0lGODdhCQAJAKEDAAAAAAAA%2F8PD%2F%2F%2F%2F%2FywAAAAACQAJAAACEYSPoivG614DIlg7ZZbxoQ8UADs%3D%29%20no%2Drepeat%200px%200%2E5em%3B%0D%0A%7D%0D%0Aul%2Eoutline%20li%2Efolded%3Ahover%20%7B%0D%0A%20%20padding%3A%200%200%200%2020px%3B%0D%0A%20%20background%3A%20transparent%20url%28data%3Aimage%2Fgif%3Bbase64%2CR0lGODdhCQAJAKEDAAAAAAAA%2F8PD%2F%2F%2F%2F%2FywAAAAACQAJAAACFISPoiu2sZyCyoV7G3hxz850CFIAADs%3D%29%20no%2Drepeat%200px%200%2E5em%3B%0D%0A%7D%0D%0A%0D%0A%2F%2A%20for%20slides%20with%20class%20%22title%22%20in%20table%20of%20contents%20%2A%2F%0D%0Aa%2Etitleslide%20%7B%20font%2Dweight%3A%20bold%3B%20font%2Dstyle%3A%20italic%20%7D%0D%0A%0D%0A%2F%2A%0D%0A%20hide%20images%20for%20work%20around%20for%20save%20as%20bug%0D%0A%20where%20browsers%20fail%20to%20save%20images%20used%20by%20CSS%0D%0A%2A%2F%0D%0Aimg%2Ehidden%20%7B%20display%3A%20none%3B%20visibility%3A%20hidden%20%7D%0D%0Adiv%2Einitial%5Fprompt%20%7B%20display%3A%20none%3B%20visibility%3A%20hidden%20%7D%0D%0A%0D%0A%20%20div%2Eslide%20%7B%0D%0A%20%20%20%20%20visibility%3A%20visible%3B%0D%0A%20%20%20%20%20position%3A%20inherit%3B%0D%0A%20%20%7D%0D%0A%20%20div%2Ehandout%20%7B%0D%0A%20%20%20%20%20border%2Dtop%2Dstyle%3A%20solid%3B%0D%0A%20%20%20%20%20border%2Dtop%2Dwidth%3A%20thin%3B%0D%0A%20%20%20%20%20border%2Dtop%2Dcolor%3A%20black%3B%0D%0A%20%20%7D%0D%0A%0D%0A%40media%20screen%20%7B%0D%0A%20%20%2Ehidden%20%7B%20display%3A%20none%3B%20visibility%3A%20visible%20%7D%0D%0A%0D%0A%20%20div%2Eslide%2Ehidden%20%7B%20display%3A%20block%3B%20visibility%3A%20visible%20%7D%0D%0A%20%20div%2Ehandout%2Ehidden%20%7B%20display%3A%20block%3B%20visibility%3A%20visible%20%7D%0D%0A%20%20div%2Ebackground%20%7B%20display%3A%20none%3B%20visibility%3A%20hidden%20%7D%0D%0A%20%20body%2Esingle%5Fslide%20div%2Einitial%5Fprompt%20%7B%20display%3A%20block%3B%20visibility%3A%20visible%20%7D%0D%0A%20%20body%2Esingle%5Fslide%20div%2Ebackground%20%7B%20display%3A%20block%3B%20visibility%3A%20visible%20%7D%0D%0A%20%20body%2Esingle%5Fslide%20div%2Ebackground%2Ehidden%20%7B%20display%3A%20none%3B%20visibility%3A%20hidden%20%7D%0D%0A%20%20body%2Esingle%5Fslide%20%2Einvisible%20%7B%20visibility%3A%20hidden%20%7D%0D%0A%20%20body%2Esingle%5Fslide%20%2Ehidden%20%7B%20display%3A%20none%3B%20visibility%3A%20hidden%20%7D%0D%0A%20%20body%2Esingle%5Fslide%20div%2Eslide%20%7B%20position%3A%20absolute%20%7D%0D%0A%20%20body%2Esingle%5Fslide%20div%2Ehandout%20%7B%20display%3A%20none%3B%20visibility%3A%20hidden%20%7D%0D%0A%7D%0D%0A%0D%0A%40media%20print%20%7B%0D%0A%20%20%2Ehidden%20%7B%20display%3A%20block%3B%20visibility%3A%20visible%20%7D%0D%0A%0D%0A%20%20div%2Eslide%20pre%20%7B%20font%2Dsize%3A%2060%25%3B%20padding%2Dleft%3A%200%2E5em%3B%20%7D%0D%0A%20%20div%2Etoolbar%20%7B%20display%3A%20none%3B%20visibility%3A%20hidden%3B%20%7D%0D%0A%20%20div%2Eslidy%5Ftoc%20%7B%20display%3A%20none%3B%20visibility%3A%20hidden%3B%20%7D%0D%0A%20%20div%2Ebackground%20%7B%20display%3A%20none%3B%20visibility%3A%20hidden%3B%20%7D%0D%0A%20%20div%2Eslide%20%7B%20page%2Dbreak%2Dbefore%3A%20always%20%7D%0D%0A%20%20%2F%2A%20%3Afirst%2Dchild%20isn%27t%20reliable%20for%20print%20media%20%2A%2F%0D%0A%20%20div%2Eslide%2Efirst%2Dslide%20%7B%20page%2Dbreak%2Dbefore%3A%20avoid%20%7D%0D%0A%7D%0D%0A%0D%0A" rel="stylesheet" type="text/css" media="screen, projection, print" />
<script src="data:application/x-javascript,%0Avar%20w3c%5Fslidy%3D%7Bns%5Fpos%3A%28typeof%20window%2EpageYOffset%21%3D%27undefined%27%29%2Ckhtml%3A%28%28navigator%2EuserAgent%29%2EindexOf%28%22KHTML%22%29%3E%3D0%3Ftrue%3Afalse%29%2Copera%3A%28%28navigator%2EuserAgent%29%2EindexOf%28%22Opera%22%29%3E%3D0%3Ftrue%3Afalse%29%2Cipad%3A%28%28navigator%2EuserAgent%29%2EindexOf%28%22iPad%22%29%3E%3D0%3Ftrue%3Afalse%29%2Ciphone%3A%28%28navigator%2EuserAgent%29%2EindexOf%28%22iPhone%22%29%3E%3D0%3Ftrue%3Afalse%29%2Candroid%3A%28%28navigator%2EuserAgent%29%2EindexOf%28%22Android%22%29%3E%3D0%3Ftrue%3Afalse%29%2Cie%3A%28typeof%20document%2Eall%21%3D%22undefined%22%26%26%21this%2Eopera%29%2Cie6%3A%28%21this%2Ens%5Fpos%26%26navigator%2EuserAgent%2EindexOf%28%22MSIE%206%22%29%21%3D%2D1%29%2Cie7%3A%28%21this%2Ens%5Fpos%26%26navigator%2EuserAgent%2EindexOf%28%22MSIE%207%22%29%21%3D%2D1%29%2Cie8%3A%28%21this%2Ens%5Fpos%26%26navigator%2EuserAgent%2EindexOf%28%22MSIE%208%22%29%21%3D%2D1%29%2Cie9%3A%28%21this%2Ens%5Fpos%26%26navigator%2EuserAgent%2EindexOf%28%22MSIE%209%22%29%21%3D%2D1%29%2Clast%5Ftap%3A0%2Cprev%5Ftap%3A0%2Cstart%5Fx%3A0%2Cstart%5Fy%3A0%2Cdelta%5Fx%3A0%2Cdelta%5Fy%3A0%2Cis%5Fxhtml%3A%2Fxml%2F%2Etest%28document%2EcontentType%29%2Cslide%5Fnumber%3A0%2Cslide%5Fnumber%5Felement%3Anull%2Cslides%3A%5B%5D%2Cnotes%3A%5B%5D%2Cbackgrounds%3A%5B%5D%2Ctoolbar%3Anull%2Ctitle%3Anull%2Clast%5Fshown%3Anull%2Ceos%3Anull%2Ctoc%3Anull%2Coutline%3Anull%2Cselected%5Ftext%5Flen%3A0%2Cview%5Fall%3A0%2Cwant%5Ftoolbar%3Atrue%2Cmouse%5Fclick%5Fenabled%3Atrue%2Cscroll%5Fhack%3A0%2Cdisable%5Fslide%5Fclick%3Afalse%2Clang%3A%22en%22%2Chelp%5Fanchor%3Anull%2Chelp%5Fpage%3A%22http%3A%2F%2Fwww%2Ew3%2Eorg%2FTalks%2FTools%2FSlidy2%2Fhelp%2Fhelp%2Ehtml%22%2Chelp%5Ftext%3A%22Navigate%20with%20mouse%20click%2C%20space%20bar%2C%20Cursor%20Left%2FRight%2C%20%22%2B%22or%20Pg%20Up%20and%20Pg%20Dn%2E%20Use%20S%20and%20B%20to%20change%20font%20size%2E%22%2Csize%5Findex%3A0%2Csize%5Fadjustment%3A0%2Csizes%3Anew%20Array%28%2210pt%22%2C%2212pt%22%2C%2214pt%22%2C%2216pt%22%2C%2218pt%22%2C%2220pt%22%2C%2222pt%22%2C%2224pt%22%2C%2226pt%22%2C%2228pt%22%2C%2230pt%22%2C%2232pt%22%29%2Clast%5Fwidth%3A0%2Clast%5Fheight%3A0%2Cobjects%3A%5B%5D%2Cset%5Fup%3Afunction%28%29%7Bvar%20init%3Dfunction%28%29%7Bw3c%5Fslidy%2Einit%28%29%3B%7D%3Bif%28typeof%20window%2EaddEventListener%21%3D%22undefined%22%29%0Awindow%2EaddEventListener%28%22load%22%2Cinit%2Cfalse%29%3Belse%0Awindow%2EattachEvent%28%22onload%22%2Cinit%29%3B%7D%2Chide%5Fslides%3Afunction%28%29%7Bif%28document%2Ebody%26%26%21w3c%5Fslidy%2Einitialized%29%0Adocument%2Ebody%2Estyle%2Evisibility%3D%22hidden%22%3Belse%0AsetTimeout%28w3c%5Fslidy%2Ehide%5Fslides%2C50%29%3B%7D%2Cie%5Fhack%3Afunction%28%29%7Bwindow%2EresizeBy%280%2C%2D1%29%3Bwindow%2EresizeBy%280%2C1%29%3B%7D%2Cinit%3Afunction%28%29%7Bdocument%2Ebody%2Estyle%2Evisibility%3D%22visible%22%3Bthis%2Einit%5Flocalization%28%29%3Bthis%2Eadd%5Ftoolbar%28%29%3Bthis%2Ewrap%5Fimplicit%5Fslides%28%29%3Bthis%2Ecollect%5Fslides%28%29%3Bthis%2Ecollect%5Fnotes%28%29%3Bthis%2Ecollect%5Fbackgrounds%28%29%3Bthis%2Eobjects%3Ddocument%2Ebody%2EgetElementsByTagName%28%22object%22%29%3Bthis%2Epatch%5Fanchors%28%29%3Bthis%2Eslide%5Fnumber%3Dthis%2Efind%5Fslide%5Fnumber%28location%2Ehref%29%3Bwindow%2Eoffscreenbuffering%3Dtrue%3Bthis%2Esize%5Fadjustment%3Dthis%2Efind%5Fsize%5Fadjust%28%29%3Bthis%2Etime%5Fleft%3Dthis%2Efind%5Fduration%28%29%3Bthis%2Ehide%5Fimage%5Ftoolbar%28%29%3Bthis%2Einit%5Foutliner%28%29%3Bthis%2Etitle%3Ddocument%2Etitle%3Bthis%2Ekeyboardless%3D%28this%2Eipad%7C%7Cthis%2Eiphone%7C%7Cthis%2Eandroid%29%3Bif%28this%2Ekeyboardless%29%0A%7Bw3c%5Fslidy%2Eremove%5Fclass%28w3c%5Fslidy%2Etoolbar%2C%22hidden%22%29%0Athis%2Ewant%5Ftoolbar%3D0%3B%7D%0Athis%2Eis%5Fxhtml%3D%28document%2Ebody%2EtagName%3D%3D%22BODY%22%3Ffalse%3Atrue%29%3Bif%28this%2Eslides%2Elength%3E0%29%0A%7Bvar%20slide%3Dthis%2Eslides%5Bthis%2Eslide%5Fnumber%5D%3Bif%28this%2Eslide%5Fnumber%3E0%29%0A%7Bthis%2Eset%5Fvisibility%5Fall%5Fincremental%28%22visible%22%29%3Bthis%2Elast%5Fshown%3Dthis%2Eprevious%5Fincremental%5Fitem%28null%29%3Bthis%2Eset%5Feos%5Fstatus%28true%29%3B%7D%0Aelse%0A%7Bthis%2Elast%5Fshown%3Dnull%3Bthis%2Eset%5Fvisibility%5Fall%5Fincremental%28%22hidden%22%29%3Bthis%2Eset%5Feos%5Fstatus%28%21this%2Enext%5Fincremental%5Fitem%28this%2Elast%5Fshown%29%29%3B%7D%0Athis%2Eset%5Flocation%28%29%3Bthis%2Eadd%5Fclass%28this%2Eslides%5B0%5D%2C%22first%2Dslide%22%29%3Bw3c%5Fslidy%2Eshow%5Fslide%28slide%29%3B%7D%0Athis%2Etoc%3Dthis%2Etable%5Fof%5Fcontents%28%29%3Bthis%2Eadd%5Finitial%5Fprompt%28%29%3Bif%28%21this%2Ekeyboardless%29%0Athis%2Eadd%5Flistener%28document%2Ebody%2C%22click%22%2Cthis%2Emouse%5Fbutton%5Fclick%29%3Bthis%2Eadd%5Flistener%28document%2C%22keydown%22%2Cthis%2Ekey%5Fdown%29%3Bthis%2Eadd%5Flistener%28document%2C%22keypress%22%2Cthis%2Ekey%5Fpress%29%3Bthis%2Eadd%5Flistener%28window%2C%22resize%22%2Cthis%2Eresized%29%3Bthis%2Eadd%5Flistener%28window%2C%22scroll%22%2Cthis%2Escrolled%29%3Bthis%2Eadd%5Flistener%28window%2C%22unload%22%2Cthis%2Eunloaded%29%3Bthis%2Eadd%5Flistener%28document%2C%22touchstart%22%2Cthis%2Etouchstart%29%3Bthis%2Eadd%5Flistener%28document%2C%22touchmove%22%2Cthis%2Etouchmove%29%3Bthis%2Eadd%5Flistener%28document%2C%22touchend%22%2Cthis%2Etouchend%29%3Bthis%2Esingle%5Fslide%5Fview%28%29%3Bthis%2Eresized%28%29%3Bif%28this%2Eie7%29%0AsetTimeout%28w3c%5Fslidy%2Eie%5Fhack%2C100%29%3Bthis%2Eshow%5Ftoolbar%28%29%3BsetInterval%28function%28%29%7Bw3c%5Fslidy%2Echeck%5Flocation%28%29%3B%7D%2C200%29%3Bw3c%5Fslidy%2Einitialized%3Dtrue%3B%7D%2Ctable%5Fof%5Fcontents%3Afunction%28%29%7Bvar%20toc%3Dthis%2Ecreate%5Felement%28%22div%22%29%3Bthis%2Eadd%5Fclass%28toc%2C%22slidy%5Ftoc%20hidden%22%29%3Bvar%20heading%3Dthis%2Ecreate%5Felement%28%22div%22%29%3Bthis%2Eadd%5Fclass%28heading%2C%22toc%2Dheading%22%29%3Bheading%2EinnerHTML%3Dthis%2Elocalize%28%22Table%20of%20Contents%22%29%3Btoc%2EappendChild%28heading%29%3Bvar%20previous%3Dnull%3Bfor%28var%20i%3D0%3Bi%3Cthis%2Eslides%2Elength%3B%2B%2Bi%29%0A%7Bvar%20title%3Dthis%2Ehas%5Fclass%28this%2Eslides%5Bi%5D%2C%22title%22%29%3Bvar%20num%3Ddocument%2EcreateTextNode%28%28i%2B1%29%2B%22%2E%20%22%29%3Btoc%2EappendChild%28num%29%3Bvar%20a%3Dthis%2Ecreate%5Felement%28%22a%22%29%3Ba%2EsetAttribute%28%22href%22%2C%22%23%28%22%2B%28i%2B1%29%2B%22%29%22%29%3Bif%28title%29%0Athis%2Eadd%5Fclass%28a%2C%22titleslide%22%29%3Bvar%20name%3Ddocument%2EcreateTextNode%28this%2Eslide%5Fname%28i%29%29%3Ba%2EappendChild%28name%29%3Ba%2Eonclick%3Dw3c%5Fslidy%2Etoc%5Fclick%3Ba%2Eonkeydown%3Dw3c%5Fslidy%2Etoc%5Fkey%5Fdown%3Ba%2Eprevious%3Dprevious%3Bif%28previous%29%0Aprevious%2Enext%3Da%3Btoc%2EappendChild%28a%29%3Bif%28i%3D%3D0%29%0Atoc%2Efirst%3Da%3Bif%28i%3Cthis%2Eslides%2Elength%2D1%29%0A%7Bvar%20br%3Dthis%2Ecreate%5Felement%28%22br%22%29%3Btoc%2EappendChild%28br%29%3B%7D%0Aprevious%3Da%3B%7D%0Atoc%2Efocus%3Dfunction%28%29%7Bif%28this%2Efirst%29%0Athis%2Efirst%2Efocus%28%29%3B%7D%0Atoc%2Eonmouseup%3Dw3c%5Fslidy%2Emouse%5Fbutton%5Fup%3Btoc%2Eonclick%3Dfunction%28e%29%7Be%7C%7C%28e%3Dwindow%2Eevent%29%3Bif%28w3c%5Fslidy%2Eselected%5Ftext%5Flen%3C%3D0%29%0Aw3c%5Fslidy%2Ehide%5Ftable%5Fof%5Fcontents%28true%29%3Bw3c%5Fslidy%2Estop%5Fpropagation%28e%29%3Bif%28e%2Ecancel%21%3Dundefined%29%0Ae%2Ecancel%3Dtrue%3Bif%28e%2EreturnValue%21%3Dundefined%29%0Ae%2EreturnValue%3Dfalse%3Breturn%20false%3B%7D%3Bdocument%2Ebody%2EinsertBefore%28toc%2Cdocument%2Ebody%2EfirstChild%29%3Breturn%20toc%3B%7D%2Cis%5Fshown%5Ftoc%3Afunction%28%29%7Breturn%21w3c%5Fslidy%2Ehas%5Fclass%28w3c%5Fslidy%2Etoc%2C%22hidden%22%29%3B%7D%2Cshow%5Ftable%5Fof%5Fcontents%3Afunction%28%29%7Bw3c%5Fslidy%2Eremove%5Fclass%28w3c%5Fslidy%2Etoc%2C%22hidden%22%29%3Bvar%20toc%3Dw3c%5Fslidy%2Etoc%3Btoc%2Efocus%28%29%3Bif%28w3c%5Fslidy%2Eie7%26%26w3c%5Fslidy%2Eslide%5Fnumber%3D%3D0%29%0AsetTimeout%28w3c%5Fslidy%2Eie%5Fhack%2C100%29%3B%7D%2Chide%5Ftable%5Fof%5Fcontents%3Afunction%28focus%29%7Bw3c%5Fslidy%2Eadd%5Fclass%28w3c%5Fslidy%2Etoc%2C%22hidden%22%29%3Bif%28focus%26%26%21w3c%5Fslidy%2Eopera%29%0Aw3c%5Fslidy%2Ehelp%5Fanchor%2Efocus%28%29%3B%7D%2Ctoggle%5Ftable%5Fof%5Fcontents%3Afunction%28%29%7Bif%28w3c%5Fslidy%2Eis%5Fshown%5Ftoc%28%29%29%0Aw3c%5Fslidy%2Ehide%5Ftable%5Fof%5Fcontents%28true%29%3Belse%0Aw3c%5Fslidy%2Eshow%5Ftable%5Fof%5Fcontents%28%29%3B%7D%2Ctoc%5Fclick%3Afunction%28e%29%7Bif%28%21e%29%0Ae%3Dwindow%2Eevent%3Bvar%20target%3Dw3c%5Fslidy%2Eget%5Ftarget%28e%29%3Bif%28target%26%26target%2EnodeType%3D%3D1%29%0A%7Bvar%20uri%3Dtarget%2EgetAttribute%28%22href%22%29%3Bif%28uri%29%0A%7Bvar%20slide%3Dw3c%5Fslidy%2Eslides%5Bw3c%5Fslidy%2Eslide%5Fnumber%5D%3Bw3c%5Fslidy%2Ehide%5Fslide%28slide%29%3Bw3c%5Fslidy%2Eslide%5Fnumber%3Dw3c%5Fslidy%2Efind%5Fslide%5Fnumber%28uri%29%3Bslide%3Dw3c%5Fslidy%2Eslides%5Bw3c%5Fslidy%2Eslide%5Fnumber%5D%3Bw3c%5Fslidy%2Elast%5Fshown%3Dnull%3Bw3c%5Fslidy%2Eset%5Flocation%28%29%3Bw3c%5Fslidy%2Eset%5Fvisibility%5Fall%5Fincremental%28%22hidden%22%29%3Bw3c%5Fslidy%2Eset%5Feos%5Fstatus%28%21w3c%5Fslidy%2Enext%5Fincremental%5Fitem%28w3c%5Fslidy%2Elast%5Fshown%29%29%3Bw3c%5Fslidy%2Eshow%5Fslide%28slide%29%3Btry%0A%7Bif%28%21w3c%5Fslidy%2Eopera%29%0Aw3c%5Fslidy%2Ehelp%5Fanchor%2Efocus%28%29%3B%7D%0Acatch%28e%29%0A%7B%7D%7D%7D%0Aw3c%5Fslidy%2Ehide%5Ftable%5Fof%5Fcontents%28true%29%3Bif%28w3c%5Fslidy%2Eie7%29w3c%5Fslidy%2Eie%5Fhack%28%29%3Bw3c%5Fslidy%2Estop%5Fpropagation%28e%29%3Breturn%20w3c%5Fslidy%2Ecancel%28e%29%3B%7D%2Ctoc%5Fkey%5Fdown%3Afunction%28event%29%7Bvar%20key%3Bif%28%21event%29%0Avar%20event%3Dwindow%2Eevent%3Bif%28window%2Eevent%29%0Akey%3Dwindow%2Eevent%2EkeyCode%3Belse%20if%28event%2Ewhich%29%0Akey%3Devent%2Ewhich%3Belse%0Areturn%20true%3Bif%28%21key%29%0Areturn%20true%3Bif%28event%2EctrlKey%7C%7Cevent%2EaltKey%29%0Areturn%20true%3Bif%28key%3D%3D13%29%0A%7Bvar%20uri%3Dthis%2EgetAttribute%28%22href%22%29%3Bif%28uri%29%0A%7Bvar%20slide%3Dw3c%5Fslidy%2Eslides%5Bw3c%5Fslidy%2Eslide%5Fnumber%5D%3Bw3c%5Fslidy%2Ehide%5Fslide%28slide%29%3Bw3c%5Fslidy%2Eslide%5Fnumber%3Dw3c%5Fslidy%2Efind%5Fslide%5Fnumber%28uri%29%3Bslide%3Dw3c%5Fslidy%2Eslides%5Bw3c%5Fslidy%2Eslide%5Fnumber%5D%3Bw3c%5Fslidy%2Elast%5Fshown%3Dnull%3Bw3c%5Fslidy%2Eset%5Flocation%28%29%3Bw3c%5Fslidy%2Eset%5Fvisibility%5Fall%5Fincremental%28%22hidden%22%29%3Bw3c%5Fslidy%2Eset%5Feos%5Fstatus%28%21w3c%5Fslidy%2Enext%5Fincremental%5Fitem%28w3c%5Fslidy%2Elast%5Fshown%29%29%3Bw3c%5Fslidy%2Eshow%5Fslide%28slide%29%3Btry%0A%7Bif%28%21w3c%5Fslidy%2Eopera%29%0Aw3c%5Fslidy%2Ehelp%5Fanchor%2Efocus%28%29%3B%7D%0Acatch%28e%29%0A%7B%7D%7D%0Aw3c%5Fslidy%2Ehide%5Ftable%5Fof%5Fcontents%28true%29%3Bif%28self%2Eie7%29%0Aw3c%5Fslidy%2Eie%5Fhack%28%29%3Breturn%20w3c%5Fslidy%2Ecancel%28event%29%3B%7D%0Aif%28key%3D%3D40%26%26this%2Enext%29%0A%7Bthis%2Enext%2Efocus%28%29%3Breturn%20w3c%5Fslidy%2Ecancel%28event%29%3B%7D%0Aif%28key%3D%3D38%26%26this%2Eprevious%29%0A%7Bthis%2Eprevious%2Efocus%28%29%3Breturn%20w3c%5Fslidy%2Ecancel%28event%29%3B%7D%0Areturn%20true%3B%7D%2Ctouchstart%3Afunction%28e%29%0A%7Bthis%2Eprev%5Ftap%3Dthis%2Elast%5Ftap%3Bthis%2Elast%5Ftap%3D%28new%20Date%29%2EgetTime%28%29%3Bvar%20tap%5Fdelay%3Dthis%2Elast%5Ftap%2Dthis%2Eprev%5Ftap%3Bif%28tap%5Fdelay%3C%3D200%29%0A%7B%7D%0Avar%20touch%3De%2Etouches%5B0%5D%3Bthis%2Estart%5Fx%3Dtouch%2EpageX%3Bthis%2Estart%5Fy%3Dtouch%2EpageY%3Bthis%2Edelta%5Fx%3Dthis%2Edelta%5Fy%3D0%3B%7D%2Ctouchmove%3Afunction%28e%29%0A%7Bvar%20touch%3De%2Etouches%5B0%5D%3Bthis%2Edelta%5Fx%3Dtouch%2EpageX%2Dthis%2Estart%5Fx%3Bthis%2Edelta%5Fy%3Dtouch%2EpageY%2Dthis%2Estart%5Fy%3B%7D%2Ctouchend%3Afunction%28e%29%0A%7Bvar%20delay%3D%28new%20Date%29%2EgetTime%28%29%2Dthis%2Elast%5Ftap%3Bvar%20dx%3Dthis%2Edelta%5Fx%3Bvar%20dy%3Dthis%2Edelta%5Fy%3Bvar%20abs%5Fdx%3DMath%2Eabs%28dx%29%3Bvar%20abs%5Fdy%3DMath%2Eabs%28dy%29%3Bif%28delay%3C500%26%26%28abs%5Fdx%3E100%7C%7Cabs%5Fdy%3E100%29%29%0A%7Bif%28abs%5Fdx%3E0%2E5%2Aabs%5Fdy%29%0A%7Bif%28dx%3C0%29%0Aw3c%5Fslidy%2Enext%5Fslide%28true%29%3Belse%0Aw3c%5Fslidy%2Eprevious%5Fslide%28true%29%3B%7D%0Aelse%20if%28abs%5Fdy%3E2%2Aabs%5Fdx%29%0A%7Bw3c%5Fslidy%2Etoggle%5Ftable%5Fof%5Fcontents%28%29%3B%7D%7D%7D%2Cbefore%5Fprint%3Afunction%28%29%7Bthis%2Eshow%5Fall%5Fslides%28%29%3Bthis%2Ehide%5Ftoolbar%28%29%3Balert%28%22before%20print%22%29%3B%7D%2Cafter%5Fprint%3Afunction%28%29%7Bif%28%21this%2Eview%5Fall%29%0A%7Bthis%2Esingle%5Fslide%5Fview%28%29%3Bthis%2Eshow%5Ftoolbar%28%29%3B%7D%0Aalert%28%22after%20print%22%29%3B%7D%2Cprint%5Fslides%3Afunction%28%29%7Bthis%2Ebefore%5Fprint%28%29%3Bwindow%2Eprint%28%29%3Bthis%2Eafter%5Fprint%28%29%3B%7D%2Ctoggle%5Fview%3Afunction%28%29%7Bif%28this%2Eview%5Fall%29%0A%7Bthis%2Esingle%5Fslide%5Fview%28%29%3Bthis%2Eshow%5Ftoolbar%28%29%3Bthis%2Eview%5Fall%3D0%3B%7D%0Aelse%0A%7Bthis%2Eshow%5Fall%5Fslides%28%29%3Bthis%2Ehide%5Ftoolbar%28%29%3Bthis%2Eview%5Fall%3D1%3B%7D%7D%2Cshow%5Fall%5Fslides%3Afunction%28%29%7Bthis%2Eremove%5Fclass%28document%2Ebody%2C%22single%5Fslide%22%29%3Bthis%2Eset%5Fvisibility%5Fall%5Fincremental%28%22visible%22%29%3B%7D%2Csingle%5Fslide%5Fview%3Afunction%28%29%7Bthis%2Eadd%5Fclass%28document%2Ebody%2C%22single%5Fslide%22%29%3Bthis%2Eset%5Fvisibility%5Fall%5Fincremental%28%22visible%22%29%3Bthis%2Elast%5Fshown%3Dthis%2Eprevious%5Fincremental%5Fitem%28null%29%3B%7D%2Chide%5Fimage%5Ftoolbar%3Afunction%28%29%7Bif%28%21this%2Ens%5Fpos%29%0A%7Bvar%20images%3Ddocument%2EgetElementsByTagName%28%22IMG%22%29%3Bfor%28var%20i%3D0%3Bi%3Cimages%2Elength%3B%2B%2Bi%29%0Aimages%5Bi%5D%2EsetAttribute%28%22galleryimg%22%2C%22no%22%29%3B%7D%7D%2Cunloaded%3Afunction%28e%29%7B%7D%2Cis%5FKHTML%3Afunction%28%29%7Bvar%20agent%3Dnavigator%2EuserAgent%3Breturn%28agent%2EindexOf%28%22KHTML%22%29%3E%3D0%3Ftrue%3Afalse%29%3B%7D%2Cslide%5Fname%3Afunction%28index%29%7Bvar%20name%3Dnull%3Bvar%20slide%3Dthis%2Eslides%5Bindex%5D%3Bvar%20heading%3Dthis%2Efind%5Fheading%28slide%29%3Bif%28heading%29%0Aname%3Dthis%2Eextract%5Ftext%28heading%29%3Bif%28%21name%29%0Aname%3Dthis%2Etitle%2B%22%28%22%2B%28index%2B1%29%2B%22%29%22%3Bname%2Ereplace%28%2F%5C%26%2Fg%2C%22%26amp%3B%22%29%3Bname%2Ereplace%28%2F%5C%3C%2Fg%2C%22%26lt%3B%22%29%3Bname%2Ereplace%28%2F%5C%3E%2Fg%2C%22%26gt%3B%22%29%3Breturn%20name%3B%7D%2Cfind%5Fheading%3Afunction%28node%29%7Bif%28%21node%7C%7Cnode%2EnodeType%21%3D1%29%0Areturn%20null%3Bif%28node%2EnodeName%3D%3D%22H1%22%7C%7Cnode%2EnodeName%3D%3D%22h1%22%29%0Areturn%20node%3Bvar%20child%3Dnode%2EfirstChild%3Bwhile%28child%29%0A%7Bnode%3Dthis%2Efind%5Fheading%28child%29%3Bif%28node%29%0Areturn%20node%3Bchild%3Dchild%2EnextSibling%3B%7D%0Areturn%20null%3B%7D%2Cextract%5Ftext%3Afunction%28node%29%7Bif%28%21node%29%0Areturn%22%22%3Bif%28node%2EnodeType%3D%3D3%29%0Areturn%20node%2EnodeValue%3Bif%28node%2EnodeType%3D%3D1%29%0A%7Bnode%3Dnode%2EfirstChild%3Bvar%20text%3D%22%22%3Bwhile%28node%29%0A%7Btext%3Dtext%2Bthis%2Eextract%5Ftext%28node%29%3Bnode%3Dnode%2EnextSibling%3B%7D%0Areturn%20text%3B%7D%0Areturn%22%22%3B%7D%2Cfind%5Fcopyright%3Afunction%28%29%7Bvar%20name%2Ccontent%3Bvar%20meta%3Ddocument%2EgetElementsByTagName%28%22meta%22%29%3Bfor%28var%20i%3D0%3Bi%3Cmeta%2Elength%3B%2B%2Bi%29%0A%7Bname%3Dmeta%5Bi%5D%2EgetAttribute%28%22name%22%29%3Bcontent%3Dmeta%5Bi%5D%2EgetAttribute%28%22content%22%29%3Bif%28name%3D%3D%22copyright%22%29%0Areturn%20content%3B%7D%0Areturn%20null%3B%7D%2Cfind%5Fsize%5Fadjust%3Afunction%28%29%7Bvar%20name%2Ccontent%2Coffset%3Bvar%20meta%3Ddocument%2EgetElementsByTagName%28%22meta%22%29%3Bfor%28var%20i%3D0%3Bi%3Cmeta%2Elength%3B%2B%2Bi%29%0A%7Bname%3Dmeta%5Bi%5D%2EgetAttribute%28%22name%22%29%3Bcontent%3Dmeta%5Bi%5D%2EgetAttribute%28%22content%22%29%3Bif%28name%3D%3D%22font%2Dsize%2Dadjustment%22%29%0Areturn%201%2Acontent%3B%7D%0Areturn%201%3B%7D%2Cfind%5Fduration%3Afunction%28%29%7Bvar%20name%2Ccontent%2Coffset%3Bvar%20meta%3Ddocument%2EgetElementsByTagName%28%22meta%22%29%3Bfor%28var%20i%3D0%3Bi%3Cmeta%2Elength%3B%2B%2Bi%29%0A%7Bname%3Dmeta%5Bi%5D%2EgetAttribute%28%22name%22%29%3Bcontent%3Dmeta%5Bi%5D%2EgetAttribute%28%22content%22%29%3Bif%28name%3D%3D%22duration%22%29%0Areturn%2060000%2Acontent%3B%7D%0Areturn%20null%3B%7D%2Creplace%5Fby%5Fnon%5Fbreaking%5Fspace%3Afunction%28str%29%7Bfor%28var%20i%3D0%3Bi%3Cstr%2Elength%3B%2B%2Bi%29%0Astr%5Bi%5D%3D160%3B%7D%2Cinit%5Foutliner%3Afunction%28%29%7Bvar%20items%3Ddocument%2EgetElementsByTagName%28%22li%22%29%3Bfor%28var%20i%3D0%3Bi%3Citems%2Elength%3B%2B%2Bi%29%0A%7Bvar%20target%3Ditems%5Bi%5D%3Bif%28%21this%2Ehas%5Fclass%28target%2EparentNode%2C%22outline%22%29%29%0Acontinue%3Btarget%2Eonclick%3Dthis%2Eoutline%5Fclick%3Bif%28this%2Efoldable%28target%29%29%0A%7Btarget%2Efoldable%3Dtrue%3Btarget%2Eonfocus%3Dfunction%28%29%7Bw3c%5Fslidy%2Eoutline%3Dthis%3B%7D%3Btarget%2Eonblur%3Dfunction%28%29%7Bw3c%5Fslidy%2Eoutline%3Dnull%3B%7D%3Bif%28%21target%2EgetAttribute%28%22tabindex%22%29%29%0Atarget%2EsetAttribute%28%22tabindex%22%2C%220%22%29%3Bif%28this%2Ehas%5Fclass%28target%2C%22expand%22%29%29%0Athis%2Eunfold%28target%29%3Belse%0Athis%2Efold%28target%29%3B%7D%0Aelse%0A%7Bthis%2Eadd%5Fclass%28target%2C%22nofold%22%29%3Btarget%2Evisible%3Dtrue%3Btarget%2Efoldable%3Dfalse%3B%7D%7D%7D%2Cfoldable%3Afunction%28item%29%7Bif%28%21item%7C%7Citem%2EnodeType%21%3D1%29%0Areturn%20false%3Bvar%20node%3Ditem%2EfirstChild%3Bwhile%28node%29%0A%7Bif%28node%2EnodeType%3D%3D1%26%26this%2Eis%5Fblock%28node%29%29%0Areturn%20true%3Bnode%3Dnode%2EnextSibling%3B%7D%0Areturn%20false%3B%7D%2Cfold%3Afunction%28item%29%7Bif%28item%29%0A%7Bthis%2Eremove%5Fclass%28item%2C%22unfolded%22%29%3Bthis%2Eadd%5Fclass%28item%2C%22folded%22%29%3B%7D%0Avar%20node%3Ditem%3Fitem%2EfirstChild%3Anull%3Bwhile%28node%29%0A%7Bif%28node%2EnodeType%3D%3D1%26%26this%2Eis%5Fblock%28node%29%29%0A%7Bw3c%5Fslidy%2Eadd%5Fclass%28node%2C%22hidden%22%29%3B%7D%0Anode%3Dnode%2EnextSibling%3B%7D%0Aitem%2Evisible%3Dfalse%3B%7D%2Cunfold%3Afunction%28item%29%7Bif%28item%29%0A%7Bthis%2Eadd%5Fclass%28item%2C%22unfolded%22%29%3Bthis%2Eremove%5Fclass%28item%2C%22folded%22%29%3B%7D%0Avar%20node%3Ditem%3Fitem%2EfirstChild%3Anull%3Bwhile%28node%29%0A%7Bif%28node%2EnodeType%3D%3D1%26%26this%2Eis%5Fblock%28node%29%29%0A%7Bw3c%5Fslidy%2Eremove%5Fclass%28node%2C%22hidden%22%29%3B%7D%0Anode%3Dnode%2EnextSibling%3B%7D%0Aitem%2Evisible%3Dtrue%3B%7D%2Coutline%5Fclick%3Afunction%28e%29%7Bif%28%21e%29%0Ae%3Dwindow%2Eevent%3Bvar%20rightclick%3Dfalse%3Bvar%20target%3Dw3c%5Fslidy%2Eget%5Ftarget%28e%29%3Bwhile%28target%26%26target%2Evisible%3D%3Dundefined%29%0Atarget%3Dtarget%2EparentNode%3Bif%28%21target%29%0Areturn%20true%3Bif%28e%2Ewhich%29%0Arightclick%3D%28e%2Ewhich%3D%3D3%29%3Belse%20if%28e%2Ebutton%29%0Arightclick%3D%28e%2Ebutton%3D%3D2%29%3Bif%28%21rightclick%26%26target%2Evisible%21%3Dundefined%29%0A%7Bif%28target%2Efoldable%29%0A%7Bif%28target%2Evisible%29%0Aw3c%5Fslidy%2Efold%28target%29%3Belse%0Aw3c%5Fslidy%2Eunfold%28target%29%3B%7D%0Aw3c%5Fslidy%2Estop%5Fpropagation%28e%29%3Be%2Ecancel%3Dtrue%3Be%2EreturnValue%3Dfalse%3B%7D%0Areturn%20false%3B%7D%2Cadd%5Finitial%5Fprompt%3Afunction%28%29%7Bvar%20prompt%3Dthis%2Ecreate%5Felement%28%22div%22%29%3Bprompt%2EsetAttribute%28%22class%22%2C%22initial%5Fprompt%22%29%3Bvar%20p1%3Dthis%2Ecreate%5Felement%28%22p%22%29%3Bprompt%2EappendChild%28p1%29%3Bp1%2EsetAttribute%28%22class%22%2C%22help%22%29%3Bif%28this%2Ekeyboardless%29%0Ap1%2EinnerHTML%3D%22swipe%20left%20to%20move%20to%20next%20slide%22%3Belse%0Ap1%2EinnerHTML%3D%22Space%2C%20Right%20Arrow%20or%20swipe%20left%20to%20move%20to%20%22%2B%22next%20slide%2C%20click%20help%20below%20for%20more%20details%22%3Bthis%2Eadd%5Flistener%28prompt%2C%22click%22%2Cfunction%28e%29%7Bdocument%2Ebody%2EremoveChild%28prompt%29%3Bw3c%5Fslidy%2Estop%5Fpropagation%28e%29%3Bif%28e%2Ecancel%21%3Dundefined%29%0Ae%2Ecancel%3Dtrue%3Bif%28e%2EreturnValue%21%3Dundefined%29%0Ae%2EreturnValue%3Dfalse%3Breturn%20false%3B%7D%29%3Bdocument%2Ebody%2EappendChild%28prompt%29%3Bthis%2Einitial%5Fprompt%3Dprompt%3BsetTimeout%28function%28%29%7Bdocument%2Ebody%2EremoveChild%28prompt%29%3B%7D%2C5000%29%3B%7D%2Cadd%5Ftoolbar%3Afunction%28%29%7Bvar%20counter%2Cpage%3Bthis%2Etoolbar%3Dthis%2Ecreate%5Felement%28%22div%22%29%3Bthis%2Etoolbar%2EsetAttribute%28%22class%22%2C%22toolbar%22%29%3Bif%28this%2Ens%5Fpos%7C%7C%21this%2Eie6%29%0A%7Bvar%20right%3Dthis%2Ecreate%5Felement%28%22div%22%29%3Bright%2EsetAttribute%28%22style%22%2C%22float%3A%20right%3B%20text%2Dalign%3A%20right%22%29%3Bcounter%3Dthis%2Ecreate%5Felement%28%22span%22%29%0Acounter%2EinnerHTML%3Dthis%2Elocalize%28%22slide%22%29%2B%22%20n%2Fm%22%3Bright%2EappendChild%28counter%29%3Bthis%2Etoolbar%2EappendChild%28right%29%3Bvar%20left%3Dthis%2Ecreate%5Felement%28%22div%22%29%3Bleft%2EsetAttribute%28%22style%22%2C%22text%2Dalign%3A%20left%22%29%3Bthis%2Eeos%3Dthis%2Ecreate%5Felement%28%22span%22%29%3Bthis%2Eeos%2EinnerHTML%3D%22%2A%20%22%3Bleft%2EappendChild%28this%2Eeos%29%3Bvar%20help%3Dthis%2Ecreate%5Felement%28%22a%22%29%3Bhelp%2EsetAttribute%28%22href%22%2Cthis%2Ehelp%5Fpage%29%3Bhelp%2EsetAttribute%28%22title%22%2Cthis%2Elocalize%28this%2Ehelp%5Ftext%29%29%3Bhelp%2EinnerHTML%3Dthis%2Elocalize%28%22help%3F%22%29%3Bleft%2EappendChild%28help%29%3Bthis%2Ehelp%5Fanchor%3Dhelp%3Bvar%20gap1%3Ddocument%2EcreateTextNode%28%22%20%22%29%3Bleft%2EappendChild%28gap1%29%3Bvar%20contents%3Dthis%2Ecreate%5Felement%28%22a%22%29%3Bcontents%2EsetAttribute%28%22href%22%2C%22javascript%3Aw3c%5Fslidy%2Etoggle%5Ftable%5Fof%5Fcontents%28%29%22%29%3Bcontents%2EsetAttribute%28%22title%22%2Cthis%2Elocalize%28%22table%20of%20contents%22%29%29%3Bcontents%2EinnerHTML%3Dthis%2Elocalize%28%22contents%3F%22%29%3Bleft%2EappendChild%28contents%29%3Bvar%20gap2%3Ddocument%2EcreateTextNode%28%22%20%22%29%3Bleft%2EappendChild%28gap2%29%3Bvar%20copyright%3Dthis%2Efind%5Fcopyright%28%29%3Bif%28copyright%29%0A%7Bvar%20span%3Dthis%2Ecreate%5Felement%28%22span%22%29%3Bspan%2EclassName%3D%22copyright%22%3Bspan%2EinnerHTML%3Dcopyright%3Bleft%2EappendChild%28span%29%3B%7D%0Athis%2Etoolbar%2EsetAttribute%28%22tabindex%22%2C%220%22%29%3Bthis%2Etoolbar%2EappendChild%28left%29%3B%7D%0Aelse%0A%7Bthis%2Etoolbar%2Estyle%2Eposition%3D%28this%2Eie7%3F%22fixed%22%3A%22absolute%22%29%3Bthis%2Etoolbar%2Estyle%2EzIndex%3D%22200%22%3Bthis%2Etoolbar%2Estyle%2Ewidth%3D%2299%2E9%25%22%3Bthis%2Etoolbar%2Estyle%2Eheight%3D%221%2E2em%22%3Bthis%2Etoolbar%2Estyle%2Etop%3D%22auto%22%3Bthis%2Etoolbar%2Estyle%2Ebottom%3D%220%22%3Bthis%2Etoolbar%2Estyle%2Eleft%3D%220%22%3Bthis%2Etoolbar%2Estyle%2Eright%3D%220%22%3Bthis%2Etoolbar%2Estyle%2EtextAlign%3D%22left%22%3Bthis%2Etoolbar%2Estyle%2EfontSize%3D%2260%25%22%3Bthis%2Etoolbar%2Estyle%2Ecolor%3D%22red%22%3Bthis%2Etoolbar%2EborderWidth%3D0%3Bthis%2Etoolbar%2EclassName%3D%22toolbar%22%3Bthis%2Etoolbar%2Estyle%2Ebackground%3D%22rgb%28240%2C240%2C240%29%22%3Bvar%20sp%3Dthis%2Ecreate%5Felement%28%22span%22%29%3Bsp%2EinnerHTML%3D%22%26nbsp%3B%26nbsp%3B%2A%26nbsp%3B%22%3Bthis%2Etoolbar%2EappendChild%28sp%29%3Bthis%2Eeos%3Dsp%3Bvar%20help%3Dthis%2Ecreate%5Felement%28%22a%22%29%3Bhelp%2EsetAttribute%28%22href%22%2Cthis%2Ehelp%5Fpage%29%3Bhelp%2EsetAttribute%28%22title%22%2Cthis%2Elocalize%28this%2Ehelp%5Ftext%29%29%3Bhelp%2EinnerHTML%3Dthis%2Elocalize%28%22help%3F%22%29%3Bthis%2Etoolbar%2EappendChild%28help%29%3Bthis%2Ehelp%5Fanchor%3Dhelp%3Bvar%20gap1%3Ddocument%2EcreateTextNode%28%22%20%22%29%3Bthis%2Etoolbar%2EappendChild%28gap1%29%3Bvar%20contents%3Dthis%2Ecreate%5Felement%28%22a%22%29%3Bcontents%2EsetAttribute%28%22href%22%2C%22javascript%3AtoggleTableOfContents%28%29%22%29%3Bcontents%2EsetAttribute%28%22title%22%2Cthis%2Elocalize%28%22table%20of%20contents%22%2Elocalize%29%29%3Bcontents%2EinnerHTML%3Dthis%2Elocalize%28%22contents%3F%22%29%3Bthis%2Etoolbar%2EappendChild%28contents%29%3Bvar%20gap2%3Ddocument%2EcreateTextNode%28%22%20%22%29%3Bthis%2Etoolbar%2EappendChild%28gap2%29%3Bvar%20copyright%3Dthis%2Efind%5Fcopyright%28%29%3Bif%28copyright%29%0A%7Bvar%20span%3Dthis%2Ecreate%5Felement%28%22span%22%29%3Bspan%2EinnerHTML%3Dcopyright%3Bspan%2Estyle%2Ecolor%3D%22black%22%3Bspan%2Estyle%2EmarginLeft%3D%220%2E5em%22%3Bthis%2Etoolbar%2EappendChild%28span%29%3B%7D%0Acounter%3Dthis%2Ecreate%5Felement%28%22div%22%29%0Acounter%2Estyle%2Eposition%3D%22absolute%22%3Bcounter%2Estyle%2Ewidth%3D%22auto%22%3Bcounter%2Estyle%2Eheight%3D%221%2E2em%22%3Bcounter%2Estyle%2Etop%3D%22auto%22%3Bcounter%2Estyle%2Ebottom%3D0%3Bcounter%2Estyle%2Eright%3D%220%22%3Bcounter%2Estyle%2EtextAlign%3D%22right%22%3Bcounter%2Estyle%2Ecolor%3D%22red%22%3Bcounter%2Estyle%2Ebackground%3D%22rgb%28240%2C240%2C240%29%22%3Bcounter%2EinnerHTML%3Dthis%2Elocalize%28%22slide%22%29%2B%22%20n%2Fm%22%3Bthis%2Etoolbar%2EappendChild%28counter%29%3B%7D%0Athis%2Etoolbar%2Eonclick%3Dfunction%28e%29%7Bif%28%21e%29%0Ae%3Dwindow%2Eevent%3Bvar%20target%3De%2Etarget%3Bif%28%21target%26%26e%2EsrcElement%29%0Atarget%3De%2EsrcElement%3Bif%28target%26%26target%2EnodeType%3D%3D3%29%0Atarget%3Dtarget%2EparentNode%3Bw3c%5Fslidy%2Estop%5Fpropagation%28e%29%3Bif%28target%26%26target%2EnodeName%2EtoLowerCase%28%29%21%3D%22a%22%29%0Aw3c%5Fslidy%2Emouse%5Fbutton%5Fclick%28e%29%3B%7D%3Bthis%2Eslide%5Fnumber%5Felement%3Dcounter%3Bthis%2Eset%5Feos%5Fstatus%28false%29%3Bdocument%2Ebody%2EappendChild%28this%2Etoolbar%29%3B%7D%2Cwrap%5Fimplicit%5Fslides%3Afunction%28%29%7Bvar%20i%2Cheading%2Cnode%2Cnext%2Cdiv%3Bvar%20headings%3Ddocument%2EgetElementsByTagName%28%22h1%22%29%3Bif%28%21headings%29%0Areturn%3Bfor%28i%3D0%3Bi%3Cheadings%2Elength%3B%2B%2Bi%29%0A%7Bheading%3Dheadings%5Bi%5D%3Bif%28heading%2EparentNode%21%3Ddocument%2Ebody%29%0Acontinue%3Bnode%3Dheading%2EnextSibling%3Bdiv%3Ddocument%2EcreateElement%28%22div%22%29%3Bthis%2Eadd%5Fclass%28div%2C%22slide%22%29%3Bdocument%2Ebody%2EreplaceChild%28div%2Cheading%29%3Bdiv%2EappendChild%28heading%29%3Bwhile%28node%29%0A%7Bif%28node%2EnodeType%3D%3D1%26%26%28node%2EnodeName%3D%3D%22H1%22%7C%7Cnode%2EnodeName%3D%3D%22h1%22%7C%7Cnode%2EnodeName%3D%3D%22DIV%22%7C%7Cnode%2EnodeName%3D%3D%22div%22%29%29%0Abreak%3Bnext%3Dnode%2EnextSibling%3Bnode%3Ddocument%2Ebody%2EremoveChild%28node%29%3Bdiv%2EappendChild%28node%29%3Bnode%3Dnext%3B%7D%7D%7D%2Ccollect%5Fslides%3Afunction%28%29%7Bvar%20slides%3Dnew%20Array%28%29%3Bvar%20divs%3Ddocument%2Ebody%2EgetElementsByTagName%28%22div%22%29%3Bfor%28var%20i%3D0%3Bi%3Cdivs%2Elength%3B%2B%2Bi%29%0A%7Bdiv%3Ddivs%2Eitem%28i%29%3Bif%28this%2Ehas%5Fclass%28div%2C%22slide%22%29%29%0A%7Bslides%5Bslides%2Elength%5D%3Ddiv%3Bthis%2Eadd%5Fclass%28div%2C%22hidden%22%29%3Bvar%20node1%3Ddocument%2EcreateElement%28%22br%22%29%3Bdiv%2EappendChild%28node1%29%3Bvar%20node2%3Ddocument%2EcreateElement%28%22br%22%29%3Bdiv%2EappendChild%28node2%29%3B%7D%0Aelse%20if%28this%2Ehas%5Fclass%28div%2C%22background%22%29%29%0A%7Bdiv%2Estyle%2Edisplay%3D%22block%22%3B%7D%7D%0Athis%2Eslides%3Dslides%3B%7D%2Ccollect%5Fnotes%3Afunction%28%29%7Bvar%20notes%3Dnew%20Array%28%29%3Bvar%20divs%3Ddocument%2Ebody%2EgetElementsByTagName%28%22div%22%29%3Bfor%28var%20i%3D0%3Bi%3Cdivs%2Elength%3B%2B%2Bi%29%0A%7Bdiv%3Ddivs%2Eitem%28i%29%3Bif%28this%2Ehas%5Fclass%28div%2C%22handout%22%29%29%0A%7Bnotes%5Bnotes%2Elength%5D%3Ddiv%3Bthis%2Eadd%5Fclass%28div%2C%22hidden%22%29%3B%7D%7D%0Athis%2Enotes%3Dnotes%3B%7D%2Ccollect%5Fbackgrounds%3Afunction%28%29%7Bvar%20backgrounds%3Dnew%20Array%28%29%3Bvar%20divs%3Ddocument%2Ebody%2EgetElementsByTagName%28%22div%22%29%3Bfor%28var%20i%3D0%3Bi%3Cdivs%2Elength%3B%2B%2Bi%29%0A%7Bdiv%3Ddivs%2Eitem%28i%29%3Bif%28this%2Ehas%5Fclass%28div%2C%22background%22%29%29%0A%7Bbackgrounds%5Bbackgrounds%2Elength%5D%3Ddiv%3Bthis%2Eadd%5Fclass%28div%2C%22hidden%22%29%3B%7D%7D%0Athis%2Ebackgrounds%3Dbackgrounds%3B%7D%2Cpatch%5Fanchors%3Afunction%28%29%7Bvar%20self%3Dw3c%5Fslidy%3Bvar%20handler%3Dfunction%28event%29%7Bif%28self%2Epage%5Faddress%28this%2Ehref%29%3D%3Dself%2Epage%5Faddress%28location%2Ehref%29%29%0A%7Bvar%20newslidenum%3Dself%2Efind%5Fslide%5Fnumber%28this%2Ehref%29%3Bif%28newslidenum%21%3Dself%2Eslide%5Fnumber%29%0A%7Bvar%20slide%3Dself%2Eslides%5Bself%2Eslide%5Fnumber%5D%3Bself%2Ehide%5Fslide%28slide%29%3Bself%2Eslide%5Fnumber%3Dnewslidenum%3Bslide%3Dself%2Eslides%5Bself%2Eslide%5Fnumber%5D%3Bself%2Eshow%5Fslide%28slide%29%3Bself%2Eset%5Flocation%28%29%3B%7D%7D%0Aelse%0Aw3c%5Fslidy%2Estop%5Fpropagation%28event%29%3Bthis%2Eblur%28%29%3Bself%2Edisable%5Fslide%5Fclick%3Dtrue%3B%7D%3Bvar%20anchors%3Ddocument%2Ebody%2EgetElementsByTagName%28%22a%22%29%3Bfor%28var%20i%3D0%3Bi%3Canchors%2Elength%3B%2B%2Bi%29%0A%7Bif%28window%2EaddEventListener%29%0Aanchors%5Bi%5D%2EaddEventListener%28%22click%22%2Chandler%2Cfalse%29%3Belse%0Aanchors%5Bi%5D%2EattachEvent%28%22onclick%22%2Chandler%29%3B%7D%7D%2Cshow%5Fslide%5Fnumber%3Afunction%28%29%7Bvar%20timer%3Dw3c%5Fslidy%2Eget%5Ftimer%28%29%3Bw3c%5Fslidy%2Eslide%5Fnumber%5Felement%2EinnerHTML%3Dtimer%2Bw3c%5Fslidy%2Elocalize%28%22slide%22%29%2B%22%20%22%2B%0A%28w3c%5Fslidy%2Eslide%5Fnumber%2B1%29%2B%22%2F%22%2Bw3c%5Fslidy%2Eslides%2Elength%3B%7D%2Ccheck%5Flocation%3Afunction%28%29%7Bvar%20hash%3Dlocation%2Ehash%3Bif%28w3c%5Fslidy%2Eslide%5Fnumber%3E0%26%26%28hash%3D%3D%22%22%7C%7Chash%3D%3D%22%23%22%29%29%0Aw3c%5Fslidy%2Egoto%5Fslide%280%29%3Belse%20if%28hash%2Elength%3E2%26%26hash%21%3D%22%23%28%22%2B%28w3c%5Fslidy%2Eslide%5Fnumber%2B1%29%2B%22%29%22%29%0A%7Bvar%20num%3DparseInt%28location%2Ehash%2Esubstr%282%29%29%3Bif%28%21isNaN%28num%29%29%0Aw3c%5Fslidy%2Egoto%5Fslide%28num%2D1%29%3B%7D%0Aif%28w3c%5Fslidy%2Etime%5Fleft%26%26w3c%5Fslidy%2Eslide%5Fnumber%3E0%29%0A%7Bw3c%5Fslidy%2Eshow%5Fslide%5Fnumber%28%29%3Bif%28w3c%5Fslidy%2Etime%5Fleft%3E0%29%0Aw3c%5Fslidy%2Etime%5Fleft%2D%3D200%3B%7D%7D%2Cget%5Ftimer%3Afunction%28%29%7Bvar%20timer%3D%22%22%3Bif%28w3c%5Fslidy%2Etime%5Fleft%29%0A%7Bvar%20mins%2Csecs%3Bsecs%3DMath%2Efloor%28w3c%5Fslidy%2Etime%5Fleft%2F1000%29%3Bmins%3DMath%2Efloor%28secs%2F60%29%3Bsecs%3Dsecs%2560%3Btimer%3D%28mins%3Fmins%2B%22m%22%3A%22%22%29%2Bsecs%2B%22s%20%22%3B%7D%0Areturn%20timer%3B%7D%2Cset%5Flocation%3Afunction%28%29%7Bvar%20uri%3Dw3c%5Fslidy%2Epage%5Faddress%28location%2Ehref%29%3Bvar%20hash%3D%22%23%28%22%2B%28w3c%5Fslidy%2Eslide%5Fnumber%2B1%29%2B%22%29%22%3Bif%28w3c%5Fslidy%2Eslide%5Fnumber%3E%3D0%29%0Auri%3Duri%2Bhash%3Bif%28w3c%5Fslidy%2Eie%26%26%28w3c%5Fslidy%2Eie6%7C%7Cw3c%5Fslidy%2Eie7%29%29%0Aw3c%5Fslidy%2Epush%5Fhash%28hash%29%3Bif%28uri%21%3Dlocation%2Ehref%29%0Alocation%2Ehref%3Duri%3Bif%28this%2Ekhtml%29%0Ahash%3D%22%28%22%2B%28w3c%5Fslidy%2Eslide%5Fnumber%2B1%29%2B%22%29%22%3Bif%28%21this%2Eie%26%26location%2Ehash%21%3Dhash%26%26location%2Ehash%21%3D%22%22%29%0Alocation%2Ehash%3Dhash%3Bdocument%2Etitle%3Dw3c%5Fslidy%2Etitle%2B%22%20%28%22%2B%28w3c%5Fslidy%2Eslide%5Fnumber%2B1%29%2B%22%29%22%3Bw3c%5Fslidy%2Eshow%5Fslide%5Fnumber%28%29%3B%7D%2Cpage%5Faddress%3Afunction%28uri%29%7Bvar%20i%3Duri%2EindexOf%28%22%23%22%29%3Bif%28i%3C0%29%0Ai%3Duri%2EindexOf%28%22%2523%22%29%3Bif%28i%3C0%29%0Areturn%20uri%3Breturn%20uri%2Esubstr%280%2Ci%29%3B%7D%2Con%5Fframe%5Floaded%3Afunction%28hash%29%7Blocation%2Ehash%3Dhash%3Bvar%20uri%3Dw3c%5Fslidy%2Epage%5Faddress%28location%2Ehref%29%3Blocation%2Ehref%3Duri%2Bhash%3B%7D%2Cpush%5Fhash%3Afunction%28hash%29%7Bif%28hash%3D%3D%22%22%29hash%3D%22%23%281%29%22%3Bwindow%2Elocation%2Ehash%3Dhash%3Bvar%20doc%3Ddocument%2EgetElementById%28%22historyFrame%22%29%2EcontentWindow%2Edocument%3Bdoc%2Eopen%28%22javascript%3A%27%3Chtml%3E%3C%2Fhtml%3E%27%22%29%3Bdoc%2Ewrite%28%22%3Chtml%3E%3Chead%3E%3Cscript%20type%3D%5C%22text%2Fjavascript%5C%22%3Ewindow%2Eparent%2Ew3c%5Fslidy%2Eon%5Fframe%5Floaded%28%27%22%2B%0A%28hash%29%2B%22%27%29%3B%3C%2Fscript%3E%3C%2Fhead%3E%3Cbody%3Ehello%20mum%3C%2Fbody%3E%3C%2Fhtml%3E%22%29%3Bdoc%2Eclose%28%29%3B%7D%2Cfind%5Fslide%5Fnumber%3Afunction%28uri%29%7Bvar%20i%3Duri%2EindexOf%28%22%23%22%29%3Bif%28i%3C0%29%0Areturn%200%3Bvar%20anchor%3Dunescape%28uri%2Esubstr%28i%2B1%29%29%3Bvar%20target%3Ddocument%2EgetElementById%28anchor%29%3Bif%28%21target%29%0A%7Bvar%20re%3D%2F%5C%28%28%5Cd%29%2B%5C%29%2F%3Bif%28anchor%2Ematch%28re%29%29%0A%7Bvar%20num%3DparseInt%28anchor%2Esubstring%281%2Canchor%2Elength%2D1%29%29%3Bif%28num%3Ethis%2Eslides%2Elength%29%0Anum%3D1%3Bif%28%2D%2Dnum%3C0%29%0Anum%3D0%3Breturn%20num%3B%7D%0Are%3D%2F%5C%5B%28%5Cd%29%2B%5C%5D%2F%3Bif%28anchor%2Ematch%28re%29%29%0A%7Bvar%20num%3DparseInt%28anchor%2Esubstring%281%2Canchor%2Elength%2D1%29%29%3Bif%28num%3Ethis%2Eslides%2Elength%29%0Anum%3D1%3Bif%28%2D%2Dnum%3C0%29%0Anum%3D0%3Breturn%20num%3B%7D%0Areturn%200%3B%7D%0Awhile%28true%29%0A%7Bif%28target%2EnodeName%2EtoLowerCase%28%29%3D%3D%22div%22%26%26this%2Ehas%5Fclass%28target%2C%22slide%22%29%29%0A%7Bbreak%3B%7D%0Atarget%3Dtarget%2EparentNode%3Bif%28%21target%29%0A%7Breturn%200%3B%7D%7D%3Bfor%28i%3D0%3Bi%3Cslides%2Elength%3B%2B%2Bi%29%0A%7Bif%28slides%5Bi%5D%3D%3Dtarget%29%0Areturn%20i%3B%7D%0Areturn%200%3B%7D%2Cprevious%5Fslide%3Afunction%28incremental%29%7Bif%28%21w3c%5Fslidy%2Eview%5Fall%29%0A%7Bvar%20slide%3Bif%28%28incremental%7C%7Cw3c%5Fslidy%2Eslide%5Fnumber%3D%3D0%29%26%26w3c%5Fslidy%2Elast%5Fshown%21%3Dnull%29%0A%7Bw3c%5Fslidy%2Elast%5Fshown%3Dw3c%5Fslidy%2Ehide%5Fprevious%5Fitem%28w3c%5Fslidy%2Elast%5Fshown%29%3Bw3c%5Fslidy%2Eset%5Feos%5Fstatus%28false%29%3B%7D%0Aelse%20if%28w3c%5Fslidy%2Eslide%5Fnumber%3E0%29%0A%7Bslide%3Dw3c%5Fslidy%2Eslides%5Bw3c%5Fslidy%2Eslide%5Fnumber%5D%3Bw3c%5Fslidy%2Ehide%5Fslide%28slide%29%3Bw3c%5Fslidy%2Eslide%5Fnumber%3Dw3c%5Fslidy%2Eslide%5Fnumber%2D1%3Bslide%3Dw3c%5Fslidy%2Eslides%5Bw3c%5Fslidy%2Eslide%5Fnumber%5D%3Bw3c%5Fslidy%2Eset%5Fvisibility%5Fall%5Fincremental%28%22visible%22%29%3Bw3c%5Fslidy%2Elast%5Fshown%3Dw3c%5Fslidy%2Eprevious%5Fincremental%5Fitem%28null%29%3Bw3c%5Fslidy%2Eset%5Feos%5Fstatus%28true%29%3Bw3c%5Fslidy%2Eshow%5Fslide%28slide%29%3B%7D%0Aw3c%5Fslidy%2Eset%5Flocation%28%29%3Bif%28%21w3c%5Fslidy%2Ens%5Fpos%29%0Aw3c%5Fslidy%2Erefresh%5Ftoolbar%28200%29%3B%7D%7D%2Cnext%5Fslide%3Afunction%28incremental%29%7Bif%28%21w3c%5Fslidy%2Eview%5Fall%29%0A%7Bvar%20slide%2Clast%3Dw3c%5Fslidy%2Elast%5Fshown%3Bif%28incremental%7C%7Cw3c%5Fslidy%2Eslide%5Fnumber%3D%3Dw3c%5Fslidy%2Eslides%2Elength%2D1%29%0Aw3c%5Fslidy%2Elast%5Fshown%3Dw3c%5Fslidy%2Ereveal%5Fnext%5Fitem%28w3c%5Fslidy%2Elast%5Fshown%29%3Bif%28%28%21incremental%7C%7Cw3c%5Fslidy%2Elast%5Fshown%3D%3Dnull%29%26%26w3c%5Fslidy%2Eslide%5Fnumber%3Cw3c%5Fslidy%2Eslides%2Elength%2D1%29%0A%7Bslide%3Dw3c%5Fslidy%2Eslides%5Bw3c%5Fslidy%2Eslide%5Fnumber%5D%3Bw3c%5Fslidy%2Ehide%5Fslide%28slide%29%3Bw3c%5Fslidy%2Eslide%5Fnumber%3Dw3c%5Fslidy%2Eslide%5Fnumber%2B1%3Bslide%3Dw3c%5Fslidy%2Eslides%5Bw3c%5Fslidy%2Eslide%5Fnumber%5D%3Bw3c%5Fslidy%2Elast%5Fshown%3Dnull%3Bw3c%5Fslidy%2Eset%5Fvisibility%5Fall%5Fincremental%28%22hidden%22%29%3Bw3c%5Fslidy%2Eshow%5Fslide%28slide%29%3B%7D%0Aelse%20if%28%21w3c%5Fslidy%2Elast%5Fshown%29%0A%7Bif%28last%26%26incremental%29%0Aw3c%5Fslidy%2Elast%5Fshown%3Dlast%3B%7D%0Aw3c%5Fslidy%2Eset%5Flocation%28%29%3Bw3c%5Fslidy%2Eset%5Feos%5Fstatus%28%21w3c%5Fslidy%2Enext%5Fincremental%5Fitem%28w3c%5Fslidy%2Elast%5Fshown%29%29%3Bif%28%21w3c%5Fslidy%2Ens%5Fpos%29%0Aw3c%5Fslidy%2Erefresh%5Ftoolbar%28200%29%3B%7D%7D%2Cfirst%5Fslide%3Afunction%28%29%7Bif%28%21w3c%5Fslidy%2Eview%5Fall%29%0A%7Bvar%20slide%3Bif%28w3c%5Fslidy%2Eslide%5Fnumber%21%3D0%29%0A%7Bslide%3Dw3c%5Fslidy%2Eslides%5Bw3c%5Fslidy%2Eslide%5Fnumber%5D%3Bw3c%5Fslidy%2Ehide%5Fslide%28slide%29%3Bw3c%5Fslidy%2Eslide%5Fnumber%3D0%3Bslide%3Dw3c%5Fslidy%2Eslides%5Bw3c%5Fslidy%2Eslide%5Fnumber%5D%3Bw3c%5Fslidy%2Elast%5Fshown%3Dnull%3Bw3c%5Fslidy%2Eset%5Fvisibility%5Fall%5Fincremental%28%22hidden%22%29%3Bw3c%5Fslidy%2Eshow%5Fslide%28slide%29%3B%7D%0Aw3c%5Fslidy%2Eset%5Feos%5Fstatus%28%21w3c%5Fslidy%2Enext%5Fincremental%5Fitem%28w3c%5Fslidy%2Elast%5Fshown%29%29%3Bw3c%5Fslidy%2Eset%5Flocation%28%29%3B%7D%7D%2Clast%5Fslide%3Afunction%28%29%7Bif%28%21w3c%5Fslidy%2Eview%5Fall%29%0A%7Bvar%20slide%3Bw3c%5Fslidy%2Elast%5Fshown%3Dnull%3Bif%28w3c%5Fslidy%2Elast%5Fshown%3D%3Dnull%26%26w3c%5Fslidy%2Eslide%5Fnumber%3Cw3c%5Fslidy%2Eslides%2Elength%2D1%29%0A%7Bslide%3Dw3c%5Fslidy%2Eslides%5Bw3c%5Fslidy%2Eslide%5Fnumber%5D%3Bw3c%5Fslidy%2Ehide%5Fslide%28slide%29%3Bw3c%5Fslidy%2Eslide%5Fnumber%3Dw3c%5Fslidy%2Eslides%2Elength%2D1%3Bslide%3Dw3c%5Fslidy%2Eslides%5Bw3c%5Fslidy%2Eslide%5Fnumber%5D%3Bw3c%5Fslidy%2Eset%5Fvisibility%5Fall%5Fincremental%28%22visible%22%29%3Bw3c%5Fslidy%2Elast%5Fshown%3Dw3c%5Fslidy%2Eprevious%5Fincremental%5Fitem%28null%29%3Bw3c%5Fslidy%2Eshow%5Fslide%28slide%29%3B%7D%0Aelse%0A%7Bw3c%5Fslidy%2Eset%5Fvisibility%5Fall%5Fincremental%28%22visible%22%29%3Bw3c%5Fslidy%2Elast%5Fshown%3Dw3c%5Fslidy%2Eprevious%5Fincremental%5Fitem%28null%29%3B%7D%0Aw3c%5Fslidy%2Eset%5Feos%5Fstatus%28true%29%3Bw3c%5Fslidy%2Eset%5Flocation%28%29%3B%7D%7D%2Cset%5Feos%5Fstatus%3Afunction%28state%29%7Bif%28this%2Eeos%29%0Athis%2Eeos%2Estyle%2Ecolor%3D%28state%3F%22rgb%28240%2C240%2C240%29%22%3A%22red%22%29%3B%7D%2Cgoto%5Fslide%3Afunction%28num%29%7Bvar%20slide%3Dw3c%5Fslidy%2Eslides%5Bw3c%5Fslidy%2Eslide%5Fnumber%5D%3Bw3c%5Fslidy%2Ehide%5Fslide%28slide%29%3Bw3c%5Fslidy%2Eslide%5Fnumber%3Dnum%3Bslide%3Dw3c%5Fslidy%2Eslides%5Bw3c%5Fslidy%2Eslide%5Fnumber%5D%3Bw3c%5Fslidy%2Elast%5Fshown%3Dnull%3Bw3c%5Fslidy%2Eset%5Fvisibility%5Fall%5Fincremental%28%22hidden%22%29%3Bw3c%5Fslidy%2Eset%5Feos%5Fstatus%28%21w3c%5Fslidy%2Enext%5Fincremental%5Fitem%28w3c%5Fslidy%2Elast%5Fshown%29%29%3Bdocument%2Etitle%3Dw3c%5Fslidy%2Etitle%2B%22%20%28%22%2B%28w3c%5Fslidy%2Eslide%5Fnumber%2B1%29%2B%22%29%22%3Bw3c%5Fslidy%2Eshow%5Fslide%28slide%29%3Bw3c%5Fslidy%2Eshow%5Fslide%5Fnumber%28%29%3B%7D%2Cshow%5Fslide%3Afunction%28slide%29%7Bthis%2Esync%5Fbackground%28slide%29%3Bwindow%2EscrollTo%280%2C0%29%3Bthis%2Eremove%5Fclass%28slide%2C%22hidden%22%29%3B%7D%2Chide%5Fslide%3Afunction%28slide%29%7Bthis%2Eadd%5Fclass%28slide%2C%22hidden%22%29%3B%7D%2Csync%5Fbackground%3Afunction%28slide%29%7Bvar%20background%3Bvar%20bgColor%3Bif%28slide%2EcurrentStyle%29%0AbgColor%3Dslide%2EcurrentStyle%5B%22backgroundColor%22%5D%3Belse%20if%28document%2EdefaultView%29%0A%7Bvar%20styles%3Ddocument%2EdefaultView%2EgetComputedStyle%28slide%2Cnull%29%3Bif%28styles%29%0AbgColor%3Dstyles%2EgetPropertyValue%28%22background%2Dcolor%22%29%3Belse%0A%7BbgColor%3D%22transparent%22%3B%7D%7D%0Aelse%0AbgColor%3D%3D%22transparent%22%3Bif%28bgColor%3D%3D%22transparent%22%7C%7CbgColor%2EindexOf%28%22rgba%22%29%3E%3D0%7C%7CbgColor%2EindexOf%28%22opacity%22%29%3E%3D0%29%0A%7Bvar%20slideClass%3Dthis%2Eget%5Fclass%5Flist%28slide%29%3Bfor%28var%20i%3D0%3Bi%3Cthis%2Ebackgrounds%2Elength%3Bi%2B%2B%29%0A%7Bbackground%3Dthis%2Ebackgrounds%5Bi%5D%3Bvar%20bgClass%3Dthis%2Eget%5Fclass%5Flist%28background%29%3Bif%28this%2Ematching%5Fbackground%28slideClass%2CbgClass%29%29%0Athis%2Eremove%5Fclass%28background%2C%22hidden%22%29%3Belse%0Athis%2Eadd%5Fclass%28background%2C%22hidden%22%29%3B%7D%7D%0Aelse%0Athis%2Ehide%5Fbackgrounds%28%29%3B%7D%2Chide%5Fbackgrounds%3Afunction%28%29%7Bfor%28var%20i%3D0%3Bi%3Cthis%2Ebackgrounds%2Elength%3Bi%2B%2B%29%0A%7Bbackground%3Dthis%2Ebackgrounds%5Bi%5D%3Bthis%2Eadd%5Fclass%28background%2C%22hidden%22%29%3B%7D%7D%2Cmatching%5Fbackground%3Afunction%28slideClass%2CbgClass%29%7Bvar%20i%2Ccount%2Cpattern%2Cresult%3Bpattern%3D%2F%5Cw%2B%2Fg%3Bresult%3DbgClass%2Ematch%28pattern%29%3Bfor%28i%3Dcount%3D0%3Bi%3Cresult%2Elength%3Bi%2B%2B%29%0A%7Bif%28result%5Bi%5D%3D%3D%22hidden%22%29%0Acontinue%3Bif%28result%5Bi%5D%3D%3D%22background%22%29%0Acontinue%3B%2B%2Bcount%3B%7D%0Aif%28count%3D%3D0%29%0Areturn%20true%3Bresult%3DslideClass%2Ematch%28pattern%29%3Bfor%28i%3Dcount%3D0%3Bi%3Cresult%2Elength%3Bi%2B%2B%29%0A%7Bif%28result%5Bi%5D%3D%3D%22hidden%22%29%0Acontinue%3Bif%28this%2Ehas%5Ftoken%28bgClass%2Cresult%5Bi%5D%29%29%0Areturn%20true%3B%7D%0Areturn%20false%3B%7D%2Cresized%3Afunction%28%29%7Bvar%20width%3D0%3Bif%28typeof%28window%2EinnerWidth%29%3D%3D%27number%27%29%0Awidth%3Dwindow%2EinnerWidth%3Belse%20if%28document%2EdocumentElement%26%26document%2EdocumentElement%2EclientWidth%29%0Awidth%3Ddocument%2EdocumentElement%2EclientWidth%3Belse%20if%28document%2Ebody%26%26document%2Ebody%2EclientWidth%29%0Awidth%3Ddocument%2Ebody%2EclientWidth%3Bvar%20height%3D0%3Bif%28typeof%28window%2EinnerHeight%29%3D%3D%27number%27%29%0Aheight%3Dwindow%2EinnerHeight%3Belse%20if%28document%2EdocumentElement%26%26document%2EdocumentElement%2EclientHeight%29%0Aheight%3Ddocument%2EdocumentElement%2EclientHeight%3Belse%20if%28document%2Ebody%26%26document%2Ebody%2EclientHeight%29%0Aheight%3Ddocument%2Ebody%2EclientHeight%3Bif%28height%26%26%28width%2Fheight%3E1%2E05%2A1024%2F768%29%29%0A%7Bwidth%3Dheight%2A1024%2E0%2F768%3B%7D%0Aif%28width%21%3Dw3c%5Fslidy%2Elast%5Fwidth%7C%7Cheight%21%3Dw3c%5Fslidy%2Elast%5Fheight%29%0A%7Bif%28width%3E%3D1100%29%0Aw3c%5Fslidy%2Esize%5Findex%3D5%3Belse%20if%28width%3E%3D1000%29%0Aw3c%5Fslidy%2Esize%5Findex%3D4%3Belse%20if%28width%3E%3D800%29%0Aw3c%5Fslidy%2Esize%5Findex%3D3%3Belse%20if%28width%3E%3D600%29%0Aw3c%5Fslidy%2Esize%5Findex%3D2%3Belse%20if%28width%29%0Aw3c%5Fslidy%2Esize%5Findex%3D0%3Bif%280%3C%3Dw3c%5Fslidy%2Esize%5Findex%2Bw3c%5Fslidy%2Esize%5Fadjustment%26%26w3c%5Fslidy%2Esize%5Findex%2Bw3c%5Fslidy%2Esize%5Fadjustment%3Cw3c%5Fslidy%2Esizes%2Elength%29%0Aw3c%5Fslidy%2Esize%5Findex%3Dw3c%5Fslidy%2Esize%5Findex%2Bw3c%5Fslidy%2Esize%5Fadjustment%3Bw3c%5Fslidy%2Eadjust%5Fobject%5Fdimensions%28width%2Cheight%29%3Bif%28document%2Ebody%2Estyle%2EfontSize%21%3Dw3c%5Fslidy%2Esizes%5Bw3c%5Fslidy%2Esize%5Findex%5D%29%0A%7Bdocument%2Ebody%2Estyle%2EfontSize%3Dw3c%5Fslidy%2Esizes%5Bw3c%5Fslidy%2Esize%5Findex%5D%3B%7D%0Aw3c%5Fslidy%2Elast%5Fwidth%3Dwidth%3Bw3c%5Fslidy%2Elast%5Fheight%3Dheight%3Bif%28w3c%5Fslidy%2Ens%5Fpos%29%0A%7Bvar%20slide%3Dw3c%5Fslidy%2Eslides%5Bw3c%5Fslidy%2Eslide%5Fnumber%5D%3Bw3c%5Fslidy%2Ehide%5Fslide%28slide%29%3Bw3c%5Fslidy%2Eshow%5Fslide%28slide%29%3B%7D%0Aw3c%5Fslidy%2Erefresh%5Ftoolbar%28200%29%3B%7D%7D%2Cscrolled%3Afunction%28%29%7Bif%28w3c%5Fslidy%2Etoolbar%26%26%21w3c%5Fslidy%2Ens%5Fpos%26%26%21w3c%5Fslidy%2Eie7%29%0A%7Bw3c%5Fslidy%2Ehack%5Foffset%3Dw3c%5Fslidy%2Escroll%5Fx%5Foffset%28%29%3Bw3c%5Fslidy%2Etoolbar%2Estyle%2Edisplay%3D%22none%22%3Bif%28w3c%5Fslidy%2Escrollhack%3D%3D0%26%26%21w3c%5Fslidy%2Eview%5Fall%29%0A%7BsetTimeout%28function%28%29%7Bw3c%5Fslidy%2Eshow%5Ftoolbar%28%29%3B%7D%2C1000%29%3Bw3c%5Fslidy%2Escrollhack%3D1%3B%7D%7D%7D%2Chide%5Ftoolbar%3Afunction%28%29%7Bw3c%5Fslidy%2Eadd%5Fclass%28w3c%5Fslidy%2Etoolbar%2C%22hidden%22%29%3Bwindow%2Efocus%28%29%3B%7D%2Crefresh%5Ftoolbar%3Afunction%28interval%29%7Bif%28%21w3c%5Fslidy%2Ens%5Fpos%26%26%21w3c%5Fslidy%2Eie7%29%0A%7Bw3c%5Fslidy%2Ehide%5Ftoolbar%28%29%3BsetTimeout%28function%28%29%7Bw3c%5Fslidy%2Eshow%5Ftoolbar%28%29%3B%7D%2Cinterval%29%3B%7D%7D%2Cshow%5Ftoolbar%3Afunction%28%29%7Bif%28w3c%5Fslidy%2Ewant%5Ftoolbar%29%0A%7Bw3c%5Fslidy%2Etoolbar%2Estyle%2Edisplay%3D%22block%22%3Bif%28%21w3c%5Fslidy%2Ens%5Fpos%29%0A%7Bvar%20xoffset%3Dw3c%5Fslidy%2Escroll%5Fx%5Foffset%28%29%3Bw3c%5Fslidy%2Etoolbar%2Estyle%2Eleft%3Dxoffset%3Bw3c%5Fslidy%2Etoolbar%2Estyle%2Eright%3Dxoffset%3Bw3c%5Fslidy%2Etoolbar%2Estyle%2Ebottom%3D0%3B%7D%0Aw3c%5Fslidy%2Eremove%5Fclass%28w3c%5Fslidy%2Etoolbar%2C%22hidden%22%29%3B%7D%0Aw3c%5Fslidy%2Escrollhack%3D0%3Btry%0A%7Bif%28%21w3c%5Fslidy%2Eopera%29%0Aw3c%5Fslidy%2Ehelp%5Fanchor%2Efocus%28%29%3B%7D%0Acatch%28e%29%0A%7B%7D%7D%2Ctoggle%5Ftoolbar%3Afunction%28%29%7Bif%28%21w3c%5Fslidy%2Eview%5Fall%29%0A%7Bif%28w3c%5Fslidy%2Ehas%5Fclass%28w3c%5Fslidy%2Etoolbar%2C%22hidden%22%29%29%0A%7Bw3c%5Fslidy%2Eremove%5Fclass%28w3c%5Fslidy%2Etoolbar%2C%22hidden%22%29%0Aw3c%5Fslidy%2Ewant%5Ftoolbar%3D1%3B%7D%0Aelse%0A%7Bw3c%5Fslidy%2Eadd%5Fclass%28w3c%5Fslidy%2Etoolbar%2C%22hidden%22%29%0Aw3c%5Fslidy%2Ewant%5Ftoolbar%3D0%3B%7D%7D%7D%2Cscroll%5Fx%5Foffset%3Afunction%28%29%7Bif%28window%2EpageXOffset%29%0Areturn%20self%2EpageXOffset%3Bif%28document%2EdocumentElement%26%26document%2EdocumentElement%2EscrollLeft%29%0Areturn%20document%2EdocumentElement%2EscrollLeft%3Bif%28document%2Ebody%29%0Areturn%20document%2Ebody%2EscrollLeft%3Breturn%200%3B%7D%2Cscroll%5Fy%5Foffset%3Afunction%28%29%7Bif%28window%2EpageYOffset%29%0Areturn%20self%2EpageYOffset%3Bif%28document%2EdocumentElement%26%26document%2EdocumentElement%2EscrollTop%29%0Areturn%20document%2EdocumentElement%2EscrollTop%3Bif%28document%2Ebody%29%0Areturn%20document%2Ebody%2EscrollTop%3Breturn%200%3B%7D%2Coptimize%5Ffont%5Fsize%3Afunction%28%29%7Bvar%20slide%3Dw3c%5Fslidy%2Eslides%5Bw3c%5Fslidy%2Eslide%5Fnumber%5D%3Bvar%20dh%3Dslide%2EscrollHeight%3Bvar%20wh%3DgetWindowHeight%28%29%3Bvar%20u%3D100%2Adh%2Fwh%3Balert%28%22window%20utilization%20%3D%20%22%2Bu%2B%22%25%20%28doc%20%22%0A%2Bdh%2B%22%20win%20%22%2Bwh%2B%22%29%22%29%3B%7D%2Cget%5Fdoc%5Fheight%3Afunction%28doc%29%7Bif%28%21doc%29%0Adoc%3Ddocument%3Bif%28doc%26%26doc%2Ebody%26%26doc%2Ebody%2EoffsetHeight%29%0Areturn%20doc%2Ebody%2EoffsetHeight%3Bif%28doc%26%26doc%2Ebody%26%26doc%2Ebody%2EscrollHeight%29%0Areturn%20doc%2Ebody%2EscrollHeight%3Balert%28%22couldn%27t%20determine%20document%20height%22%29%3B%7D%2Cget%5Fwindow%5Fheight%3Afunction%28%29%7Bif%28typeof%28window%2EinnerHeight%29%3D%3D%27number%27%29%0Areturn%20window%2EinnerHeight%3Bif%28document%2EdocumentElement%26%26document%2EdocumentElement%2EclientHeight%29%0Areturn%20document%2EdocumentElement%2EclientHeight%3Bif%28document%2Ebody%26%26document%2Ebody%2EclientHeight%29%0Areturn%20document%2Ebody%2EclientHeight%3B%7D%2Cdocument%5Fheight%3Afunction%28%29%7Bvar%20sh%2Coh%3Bsh%3Ddocument%2Ebody%2EscrollHeight%3Boh%3Ddocument%2Ebody%2EoffsetHeight%3Bif%28sh%26%26oh%29%0A%7Breturn%28sh%3Eoh%3Fsh%3Aoh%29%3B%7D%0Areturn%200%3B%7D%2Csmaller%3Afunction%28%29%7Bif%28w3c%5Fslidy%2Esize%5Findex%3E0%29%0A%7B%2D%2Dw3c%5Fslidy%2Esize%5Findex%3B%7D%0Aw3c%5Fslidy%2Etoolbar%2Estyle%2Edisplay%3D%22none%22%3Bdocument%2Ebody%2Estyle%2EfontSize%3Dw3c%5Fslidy%2Esizes%5Bw3c%5Fslidy%2Esize%5Findex%5D%3Bvar%20slide%3Dw3c%5Fslidy%2Eslides%5Bw3c%5Fslidy%2Eslide%5Fnumber%5D%3Bw3c%5Fslidy%2Ehide%5Fslide%28slide%29%3Bw3c%5Fslidy%2Eshow%5Fslide%28slide%29%3BsetTimeout%28function%28%29%7Bw3c%5Fslidy%2Eshow%5Ftoolbar%28%29%3B%7D%2C50%29%3B%7D%2Cbigger%3Afunction%28%29%7Bif%28w3c%5Fslidy%2Esize%5Findex%3Cw3c%5Fslidy%2Esizes%2Elength%2D1%29%0A%7B%2B%2Bw3c%5Fslidy%2Esize%5Findex%3B%7D%0Aw3c%5Fslidy%2Etoolbar%2Estyle%2Edisplay%3D%22none%22%3Bdocument%2Ebody%2Estyle%2EfontSize%3Dw3c%5Fslidy%2Esizes%5Bw3c%5Fslidy%2Esize%5Findex%5D%3Bvar%20slide%3Dw3c%5Fslidy%2Eslides%5Bw3c%5Fslidy%2Eslide%5Fnumber%5D%3Bw3c%5Fslidy%2Ehide%5Fslide%28slide%29%3Bw3c%5Fslidy%2Eshow%5Fslide%28slide%29%3BsetTimeout%28function%28%29%7Bw3c%5Fslidy%2Eshow%5Ftoolbar%28%29%3B%7D%2C50%29%3B%7D%2Cadjust%5Fobject%5Fdimensions%3Afunction%28width%2Cheight%29%7Bfor%28var%20i%3D0%3Bi%3Cw3c%5Fslidy%2Eobjects%2Elength%3Bi%2B%2B%29%0A%7Bvar%20obj%3Dthis%2Eobjects%5Bi%5D%3Bvar%20mimeType%3Dobj%2EgetAttribute%28%22type%22%29%3Bif%28mimeType%3D%3D%22image%2Fsvg%2Bxml%22%7C%7CmimeType%3D%3D%22application%2Fx%2Dshockwave%2Dflash%22%29%0A%7Bif%28%21obj%2EinitialWidth%29%0Aobj%2EinitialWidth%3Dobj%2EgetAttribute%28%22width%22%29%3Bif%28%21obj%2EinitialHeight%29%0Aobj%2EinitialHeight%3Dobj%2EgetAttribute%28%22height%22%29%3Bif%28obj%2EinitialWidth%26%26obj%2EinitialWidth%2EcharAt%28obj%2EinitialWidth%2Elength%2D1%29%3D%3D%22%25%22%29%0A%7Bvar%20w%3DparseInt%28obj%2EinitialWidth%2Eslice%280%2Cobj%2EinitialWidth%2Elength%2D1%29%29%3Bvar%20newW%3Dwidth%2A%28w%2F100%2E0%29%3Bobj%2EsetAttribute%28%22width%22%2CnewW%29%3B%7D%0Aif%28obj%2EinitialHeight%26%26obj%2EinitialHeight%2EcharAt%28obj%2EinitialHeight%2Elength%2D1%29%3D%3D%22%25%22%29%0A%7Bvar%20h%3DparseInt%28obj%2EinitialHeight%2Eslice%280%2Cobj%2EinitialHeight%2Elength%2D1%29%29%3Bvar%20newH%3Dheight%2A%28h%2F100%2E0%29%3Bobj%2EsetAttribute%28%22height%22%2CnewH%29%3B%7D%7D%7D%7D%2Ckey%5Fpress%3Afunction%28event%29%7Bif%28%21event%29%0Aevent%3Dwindow%2Eevent%3Bif%28%21w3c%5Fslidy%2Ekey%5Fwanted%29%0Areturn%20w3c%5Fslidy%2Ecancel%28event%29%3Breturn%20true%3B%7D%2Ckey%5Fdown%3Afunction%28event%29%7Bvar%20key%2Ctarget%2Ctag%3Bw3c%5Fslidy%2Ekey%5Fwanted%3Dtrue%3Bif%28%21event%29%0Aevent%3Dwindow%2Eevent%3Bif%28window%2Eevent%29%0A%7Bkey%3Dwindow%2Eevent%2EkeyCode%3Btarget%3Dwindow%2Eevent%2EsrcElement%3B%7D%0Aelse%20if%28event%2Ewhich%29%0A%7Bkey%3Devent%2Ewhich%3Btarget%3Devent%2Etarget%3B%7D%0Aelse%0Areturn%20true%3Bif%28%21key%29%0Areturn%20true%3Bif%28%21w3c%5Fslidy%2Eslidy%5Fchrome%28target%29%26%26w3c%5Fslidy%2Especial%5Felement%28target%29%29%0Areturn%20true%3Bif%28event%2EctrlKey%7C%7Cevent%2EaltKey%7C%7Cevent%2EmetaKey%29%0Areturn%20true%3Bif%28w3c%5Fslidy%2Eis%5Fshown%5Ftoc%28%29%26%26key%21%3D9%26%26key%21%3D16%26%26key%21%3D38%26%26key%21%3D40%29%0A%7Bw3c%5Fslidy%2Ehide%5Ftable%5Fof%5Fcontents%28true%29%3Bif%28key%3D%3D27%7C%7Ckey%3D%3D84%7C%7Ckey%3D%3D67%29%0Areturn%20w3c%5Fslidy%2Ecancel%28event%29%3B%7D%0Aif%28key%3D%3D34%29%0A%7Bif%28w3c%5Fslidy%2Eview%5Fall%29%0Areturn%20true%3Bw3c%5Fslidy%2Enext%5Fslide%28false%29%3Breturn%20w3c%5Fslidy%2Ecancel%28event%29%3B%7D%0Aelse%20if%28key%3D%3D33%29%0A%7Bif%28w3c%5Fslidy%2Eview%5Fall%29%0Areturn%20true%3Bw3c%5Fslidy%2Eprevious%5Fslide%28false%29%3Breturn%20w3c%5Fslidy%2Ecancel%28event%29%3B%7D%0Aelse%20if%28key%3D%3D32%29%0A%7Bw3c%5Fslidy%2Enext%5Fslide%28true%29%3Breturn%20w3c%5Fslidy%2Ecancel%28event%29%3B%7D%0Aelse%20if%28key%3D%3D37%29%0A%7Bw3c%5Fslidy%2Eprevious%5Fslide%28%21event%2EshiftKey%29%3Breturn%20w3c%5Fslidy%2Ecancel%28event%29%3B%7D%0Aelse%20if%28key%3D%3D36%29%0A%7Bw3c%5Fslidy%2Efirst%5Fslide%28%29%3Breturn%20w3c%5Fslidy%2Ecancel%28event%29%3B%7D%0Aelse%20if%28key%3D%3D35%29%0A%7Bw3c%5Fslidy%2Elast%5Fslide%28%29%3Breturn%20w3c%5Fslidy%2Ecancel%28event%29%3B%7D%0Aelse%20if%28key%3D%3D39%29%0A%7Bw3c%5Fslidy%2Enext%5Fslide%28%21event%2EshiftKey%29%3Breturn%20w3c%5Fslidy%2Ecancel%28event%29%3B%7D%0Aelse%20if%28key%3D%3D13%29%0A%7Bif%28w3c%5Fslidy%2Eoutline%29%0A%7Bif%28w3c%5Fslidy%2Eoutline%2Evisible%29%0Aw3c%5Fslidy%2Efold%28w3c%5Fslidy%2Eoutline%29%3Belse%0Aw3c%5Fslidy%2Eunfold%28w3c%5Fslidy%2Eoutline%29%3Breturn%20w3c%5Fslidy%2Ecancel%28event%29%3B%7D%7D%0Aelse%20if%28key%3D%3D188%29%0A%7Bw3c%5Fslidy%2Esmaller%28%29%3Breturn%20w3c%5Fslidy%2Ecancel%28event%29%3B%7D%0Aelse%20if%28key%3D%3D190%29%0A%7Bw3c%5Fslidy%2Ebigger%28%29%3Breturn%20w3c%5Fslidy%2Ecancel%28event%29%3B%7D%0Aelse%20if%28key%3D%3D189%7C%7Ckey%3D%3D109%29%0A%7Bw3c%5Fslidy%2Esmaller%28%29%3Breturn%20w3c%5Fslidy%2Ecancel%28event%29%3B%7D%0Aelse%20if%28key%3D%3D187%7C%7Ckey%3D%3D191%7C%7Ckey%3D%3D107%29%0A%7Bw3c%5Fslidy%2Ebigger%28%29%3Breturn%20w3c%5Fslidy%2Ecancel%28event%29%3B%7D%0Aelse%20if%28key%3D%3D83%29%0A%7Bw3c%5Fslidy%2Esmaller%28%29%3Breturn%20w3c%5Fslidy%2Ecancel%28event%29%3B%7D%0Aelse%20if%28key%3D%3D66%29%0A%7Bw3c%5Fslidy%2Ebigger%28%29%3Breturn%20w3c%5Fslidy%2Ecancel%28event%29%3B%7D%0Aelse%20if%28key%3D%3D90%29%0A%7Bw3c%5Fslidy%2Elast%5Fslide%28%29%3Breturn%20w3c%5Fslidy%2Ecancel%28event%29%3B%7D%0Aelse%20if%28key%3D%3D70%29%0A%7Bw3c%5Fslidy%2Etoggle%5Ftoolbar%28%29%3Breturn%20w3c%5Fslidy%2Ecancel%28event%29%3B%7D%0Aelse%20if%28key%3D%3D65%29%0A%7Bw3c%5Fslidy%2Etoggle%5Fview%28%29%3Breturn%20w3c%5Fslidy%2Ecancel%28event%29%3B%7D%0Aelse%20if%28key%3D%3D75%29%0A%7Bw3c%5Fslidy%2Emouse%5Fclick%5Fenabled%3D%21w3c%5Fslidy%2Emouse%5Fclick%5Fenabled%3Bvar%20alert%5Fmsg%3D%28w3c%5Fslidy%2Emouse%5Fclick%5Fenabled%3F%22enabled%22%3A%22disabled%22%29%2B%22%20mouse%20click%20advance%22%3Balert%28w3c%5Fslidy%2Elocalize%28alert%5Fmsg%29%29%3Breturn%20w3c%5Fslidy%2Ecancel%28event%29%3B%7D%0Aelse%20if%28key%3D%3D84%7C%7Ckey%3D%3D67%29%0A%7Bif%28w3c%5Fslidy%2Etoc%29%0Aw3c%5Fslidy%2Etoggle%5Ftable%5Fof%5Fcontents%28%29%3Breturn%20w3c%5Fslidy%2Ecancel%28event%29%3B%7D%0Aelse%20if%28key%3D%3D72%29%0A%7Bwindow%2Elocation%3Dw3c%5Fslidy%2Ehelp%5Fpage%3Breturn%20w3c%5Fslidy%2Ecancel%28event%29%3B%7D%0Areturn%20true%3B%7D%2Ccreate%5Felement%3Afunction%28name%29%7Bif%28this%2Exhtml%26%26%28typeof%20document%2EcreateElementNS%21%3D%27undefined%27%29%29%0Areturn%20document%2EcreateElementNS%28%22http%3A%2F%2Fwww%2Ew3%2Eorg%2F1999%2Fxhtml%22%2Cname%29%0Areturn%20document%2EcreateElement%28name%29%3B%7D%2Cget%5Felement%5Fstyle%3Afunction%28elem%2CIEStyleProp%2CCSSStyleProp%29%7Bif%28elem%2EcurrentStyle%29%0A%7Breturn%20elem%2EcurrentStyle%5BIEStyleProp%5D%3B%7D%0Aelse%20if%28window%2EgetComputedStyle%29%0A%7Bvar%20compStyle%3Dwindow%2EgetComputedStyle%28elem%2C%22%22%29%3Breturn%20compStyle%2EgetPropertyValue%28CSSStyleProp%29%3B%7D%0Areturn%22%22%3B%7D%2Chas%5Ftoken%3Afunction%28str%2Ctoken%29%7Bif%28str%29%0A%7Bvar%20pattern%3D%2F%5Cw%2B%2Fg%3Bvar%20result%3Dstr%2Ematch%28pattern%29%3Bfor%28var%20i%3D0%3Bi%3Cresult%2Elength%3Bi%2B%2B%29%0A%7Bif%28result%5Bi%5D%3D%3Dtoken%29%0Areturn%20true%3B%7D%7D%0Areturn%20false%3B%7D%2Cget%5Fclass%5Flist%3Afunction%28element%29%7Bif%28typeof%20element%2EclassName%21%3D%27undefined%27%29%0Areturn%20element%2EclassName%3Breturn%20element%2EgetAttribute%28%22class%22%29%3B%7D%2Chas%5Fclass%3Afunction%28element%2Cname%29%7Bif%28element%2EnodeType%21%3D1%29%0Areturn%20false%3Bvar%20regexp%3Dnew%20RegExp%28%22%28%5E%7C%20%29%22%2Bname%2B%22%5CW%2A%22%29%3Bif%28typeof%20element%2EclassName%21%3D%27undefined%27%29%0Areturn%20regexp%2Etest%28element%2EclassName%29%3Breturn%20regexp%2Etest%28element%2EgetAttribute%28%22class%22%29%29%3B%7D%2Cremove%5Fclass%3Afunction%28element%2Cname%29%7Bvar%20regexp%3Dnew%20RegExp%28%22%28%5E%7C%20%29%22%2Bname%2B%22%5CW%2A%22%29%3Bvar%20clsval%3D%22%22%3Bif%28typeof%20element%2EclassName%21%3D%27undefined%27%29%0A%7Bclsval%3Delement%2EclassName%3Bif%28clsval%29%0A%7Bclsval%3Dclsval%2Ereplace%28regexp%2C%22%22%29%3Belement%2EclassName%3Dclsval%3B%7D%7D%0Aelse%0A%7Bclsval%3Delement%2EgetAttribute%28%22class%22%29%3Bif%28clsval%29%0A%7Bclsval%3Dclsval%2Ereplace%28regexp%2C%22%22%29%3Belement%2EsetAttribute%28%22class%22%2Cclsval%29%3B%7D%7D%7D%2Cadd%5Fclass%3Afunction%28element%2Cname%29%7Bif%28%21this%2Ehas%5Fclass%28element%2Cname%29%29%0A%7Bif%28typeof%20element%2EclassName%21%3D%27undefined%27%29%0Aelement%2EclassName%2B%3D%22%20%22%2Bname%3Belse%0A%7Bvar%20clsval%3Delement%2EgetAttribute%28%22class%22%29%3Bclsval%3Dclsval%3Fclsval%2B%22%20%22%2Bname%3Aname%3Belement%2EsetAttribute%28%22class%22%2Cclsval%29%3B%7D%7D%7D%2Cincremental%5Felements%3Anull%2Cokay%5Ffor%5Fincremental%3Afunction%28name%29%7Bif%28%21this%2Eincremental%5Felements%29%0A%7Bvar%20inclist%3Dnew%20Array%28%29%3Binclist%5B%22p%22%5D%3Dtrue%3Binclist%5B%22pre%22%5D%3Dtrue%3Binclist%5B%22li%22%5D%3Dtrue%3Binclist%5B%22blockquote%22%5D%3Dtrue%3Binclist%5B%22dt%22%5D%3Dtrue%3Binclist%5B%22dd%22%5D%3Dtrue%3Binclist%5B%22h2%22%5D%3Dtrue%3Binclist%5B%22h3%22%5D%3Dtrue%3Binclist%5B%22h4%22%5D%3Dtrue%3Binclist%5B%22h5%22%5D%3Dtrue%3Binclist%5B%22h6%22%5D%3Dtrue%3Binclist%5B%22span%22%5D%3Dtrue%3Binclist%5B%22address%22%5D%3Dtrue%3Binclist%5B%22table%22%5D%3Dtrue%3Binclist%5B%22tr%22%5D%3Dtrue%3Binclist%5B%22th%22%5D%3Dtrue%3Binclist%5B%22td%22%5D%3Dtrue%3Binclist%5B%22img%22%5D%3Dtrue%3Binclist%5B%22object%22%5D%3Dtrue%3Bthis%2Eincremental%5Felements%3Dinclist%3B%7D%0Areturn%20this%2Eincremental%5Felements%5Bname%2EtoLowerCase%28%29%5D%3B%7D%2Cnext%5Fincremental%5Fitem%3Afunction%28node%29%7Bvar%20br%3Dthis%2Eis%5Fxhtml%3F%22br%22%3A%22BR%22%3Bvar%20slide%3Dw3c%5Fslidy%2Eslides%5Bw3c%5Fslidy%2Eslide%5Fnumber%5D%3Bfor%28%3B%3B%29%0A%7Bnode%3Dw3c%5Fslidy%2Enext%5Fnode%28slide%2Cnode%29%3Bif%28node%3D%3Dnull%7C%7Cnode%2EparentNode%3D%3Dnull%29%0Abreak%3Bif%28node%2EnodeType%3D%3D1%29%0A%7Bif%28node%2EnodeName%3D%3Dbr%29%0Acontinue%3Bif%28w3c%5Fslidy%2Ehas%5Fclass%28node%2C%22incremental%22%29%26%26w3c%5Fslidy%2Eokay%5Ffor%5Fincremental%28node%2EnodeName%29%29%0Areturn%20node%3Bif%28w3c%5Fslidy%2Ehas%5Fclass%28node%2EparentNode%2C%22incremental%22%29%26%26%21w3c%5Fslidy%2Ehas%5Fclass%28node%2C%22non%2Dincremental%22%29%29%0Areturn%20node%3B%7D%7D%0Areturn%20node%3B%7D%2Cprevious%5Fincremental%5Fitem%3Afunction%28node%29%7Bvar%20br%3Dthis%2Eis%5Fxhtml%3F%22br%22%3A%22BR%22%3Bvar%20slide%3Dw3c%5Fslidy%2Eslides%5Bw3c%5Fslidy%2Eslide%5Fnumber%5D%3Bfor%28%3B%3B%29%0A%7Bnode%3Dw3c%5Fslidy%2Eprevious%5Fnode%28slide%2Cnode%29%3Bif%28node%3D%3Dnull%7C%7Cnode%2EparentNode%3D%3Dnull%29%0Abreak%3Bif%28node%2EnodeType%3D%3D1%29%0A%7Bif%28node%2EnodeName%3D%3Dbr%29%0Acontinue%3Bif%28w3c%5Fslidy%2Ehas%5Fclass%28node%2C%22incremental%22%29%26%26w3c%5Fslidy%2Eokay%5Ffor%5Fincremental%28node%2EnodeName%29%29%0Areturn%20node%3Bif%28w3c%5Fslidy%2Ehas%5Fclass%28node%2EparentNode%2C%22incremental%22%29%26%26%21w3c%5Fslidy%2Ehas%5Fclass%28node%2C%22non%2Dincremental%22%29%29%0Areturn%20node%3B%7D%7D%0Areturn%20node%3B%7D%2Cset%5Fvisibility%5Fall%5Fincremental%3Afunction%28value%29%7Bvar%20node%3Dthis%2Enext%5Fincremental%5Fitem%28null%29%3Bif%28value%3D%3D%22hidden%22%29%0A%7Bwhile%28node%29%0A%7Bw3c%5Fslidy%2Eadd%5Fclass%28node%2C%22invisible%22%29%3Bnode%3Dw3c%5Fslidy%2Enext%5Fincremental%5Fitem%28node%29%3B%7D%7D%0Aelse%0A%7Bwhile%28node%29%0A%7Bw3c%5Fslidy%2Eremove%5Fclass%28node%2C%22invisible%22%29%3Bnode%3Dw3c%5Fslidy%2Enext%5Fincremental%5Fitem%28node%29%3B%7D%7D%7D%2Creveal%5Fnext%5Fitem%3Afunction%28node%29%7Bnode%3Dw3c%5Fslidy%2Enext%5Fincremental%5Fitem%28node%29%3Bif%28node%26%26node%2EnodeType%3D%3D1%29%0Aw3c%5Fslidy%2Eremove%5Fclass%28node%2C%22invisible%22%29%3Breturn%20node%3B%7D%2Chide%5Fprevious%5Fitem%3Afunction%28node%29%7Bif%28node%26%26node%2EnodeType%3D%3D1%29%0Aw3c%5Fslidy%2Eadd%5Fclass%28node%2C%22invisible%22%29%3Breturn%20this%2Eprevious%5Fincremental%5Fitem%28node%29%3B%7D%2Cnext%5Fnode%3Afunction%28root%2Cnode%29%7Bif%28node%3D%3Dnull%29%0Areturn%20root%2EfirstChild%3Bif%28node%2EfirstChild%29%0Areturn%20node%2EfirstChild%3Bif%28node%2EnextSibling%29%0Areturn%20node%2EnextSibling%3Bfor%28%3B%3B%29%0A%7Bnode%3Dnode%2EparentNode%3Bif%28%21node%7C%7Cnode%3D%3Droot%29%0Abreak%3Bif%28node%26%26node%2EnextSibling%29%0Areturn%20node%2EnextSibling%3B%7D%0Areturn%20null%3B%7D%2Cprevious%5Fnode%3Afunction%28root%2Cnode%29%7Bif%28node%3D%3Dnull%29%0A%7Bnode%3Droot%2ElastChild%3Bif%28node%29%0A%7Bwhile%28node%2ElastChild%29%0Anode%3Dnode%2ElastChild%3B%7D%0Areturn%20node%3B%7D%0Aif%28node%2EpreviousSibling%29%0A%7Bnode%3Dnode%2EpreviousSibling%3Bwhile%28node%2ElastChild%29%0Anode%3Dnode%2ElastChild%3Breturn%20node%3B%7D%0Aif%28node%2EparentNode%21%3Droot%29%0Areturn%20node%2EparentNode%3Breturn%20null%3B%7D%2Cprevious%5Fsibling%5Felement%3Afunction%28el%29%7Bel%3Del%2EpreviousSibling%3Bwhile%28el%26%26el%2EnodeType%21%3D1%29%0Ael%3Del%2EpreviousSibling%3Breturn%20el%3B%7D%2Cnext%5Fsibling%5Felement%3Afunction%28el%29%7Bel%3Del%2EnextSibling%3Bwhile%28el%26%26el%2EnodeType%21%3D1%29%0Ael%3Del%2EnextSibling%3Breturn%20el%3B%7D%2Cfirst%5Fchild%5Felement%3Afunction%28el%29%7Bvar%20node%3Bfor%28node%3Del%2EfirstChild%3Bnode%3Bnode%3Dnode%2EnextSibling%29%0A%7Bif%28node%2EnodeType%3D%3D1%29%0Abreak%3B%7D%0Areturn%20node%3B%7D%2Cfirst%5Ftag%3Afunction%28element%2Ctag%29%7Bvar%20node%3Bif%28%21this%2Eis%5Fxhtml%29%0Atag%3Dtag%2EtoUpperCase%28%29%3Bfor%28node%3Delement%2EfirstChild%3Bnode%3Bnode%3Dnode%2EnextSibling%29%0A%7Bif%28node%2EnodeType%3D%3D1%26%26node%2EnodeName%3D%3Dtag%29%0Abreak%3B%7D%0Areturn%20node%3B%7D%2Chide%5Fselection%3Afunction%28%29%7Bif%28window%2EgetSelection%29%0A%7Bvar%20selection%3Dwindow%2EgetSelection%28%29%3Bif%28selection%2ErangeCount%3E0%29%0A%7Bvar%20range%3Dselection%2EgetRangeAt%280%29%3Brange%2Ecollapse%28false%29%3B%7D%7D%0Aelse%0A%7Bvar%20textRange%3Ddocument%2Eselection%2EcreateRange%28%29%3BtextRange%2Ecollapse%28false%29%3B%7D%7D%2Cget%5Fselected%5Ftext%3Afunction%28%29%7Btry%0A%7Bif%28window%2EgetSelection%29%0Areturn%20window%2EgetSelection%28%29%2EtoString%28%29%3Bif%28document%2EgetSelection%29%0Areturn%20document%2EgetSelection%28%29%2EtoString%28%29%3Bif%28document%2Eselection%29%0Areturn%20document%2Eselection%2EcreateRange%28%29%2Etext%3B%7D%0Acatch%28e%29%0A%7B%7D%0Areturn%22%22%3B%7D%2Cmouse%5Fbutton%5Fup%3Afunction%28e%29%7Bw3c%5Fslidy%2Eselected%5Ftext%5Flen%3Dw3c%5Fslidy%2Eget%5Fselected%5Ftext%28%29%2Elength%3B%7D%2Cmouse%5Fbutton%5Fclick%3Afunction%28e%29%7Bvar%20rightclick%3Dfalse%3Bvar%20leftclick%3Dfalse%3Bvar%20middleclick%3Dfalse%3Bvar%20target%3Bif%28%21e%29%0Avar%20e%3Dwindow%2Eevent%3Bif%28e%2Etarget%29%0Atarget%3De%2Etarget%3Belse%20if%28e%2EsrcElement%29%0Atarget%3De%2EsrcElement%3Bif%28target%2EnodeType%3D%3D3%29%0Atarget%3Dtarget%2EparentNode%3Bif%28e%2Ewhich%29%0A%7Bleftclick%3D%28e%2Ewhich%3D%3D1%29%3Bmiddleclick%3D%28e%2Ewhich%3D%3D2%29%3Brightclick%3D%28e%2Ewhich%3D%3D3%29%3B%7D%0Aelse%20if%28e%2Ebutton%29%0A%7Bif%28e%2Ebutton%3D%3D4%29%0Amiddleclick%3Dtrue%3Brightclick%3D%28e%2Ebutton%3D%3D2%29%3B%7D%0Aelse%0Aleftclick%3Dtrue%3Bif%28w3c%5Fslidy%2Eselected%5Ftext%5Flen%3E0%29%0A%7Bw3c%5Fslidy%2Estop%5Fpropagation%28e%29%3Be%2Ecancel%3Dtrue%3Be%2EreturnValue%3Dfalse%3Breturn%20false%3B%7D%0Aw3c%5Fslidy%2Ehide%5Ftable%5Fof%5Fcontents%28false%29%3Bvar%20tag%3Dtarget%2EnodeName%2EtoLowerCase%28%29%3Bif%28w3c%5Fslidy%2Emouse%5Fclick%5Fenabled%26%26leftclick%26%26%21w3c%5Fslidy%2Especial%5Felement%28target%29%26%26%21target%2Eonclick%29%0A%7Bw3c%5Fslidy%2Enext%5Fslide%28true%29%3Bw3c%5Fslidy%2Estop%5Fpropagation%28e%29%3Be%2Ecancel%3Dtrue%3Be%2EreturnValue%3Dfalse%3Breturn%20false%3B%7D%0Areturn%20true%3B%7D%2Cspecial%5Felement%3Afunction%28e%29%7Bvar%20tag%3De%2EnodeName%2EtoLowerCase%28%29%3Breturn%20e%2Eonkeydown%7C%7Ce%2Eonclick%7C%7Ctag%3D%3D%22a%22%7C%7Ctag%3D%3D%22embed%22%7C%7Ctag%3D%3D%22object%22%7C%7Ctag%3D%3D%22video%22%7C%7Ctag%3D%3D%22audio%22%7C%7Ctag%3D%3D%22input%22%7C%7Ctag%3D%3D%22textarea%22%7C%7Ctag%3D%3D%22select%22%7C%7Ctag%3D%3D%22option%22%3B%7D%2Cslidy%5Fchrome%3Afunction%28el%29%7Bwhile%28el%29%0A%7Bif%28el%3D%3Dw3c%5Fslidy%2Etoc%7C%7Cel%3D%3Dw3c%5Fslidy%2Etoolbar%7C%7Cw3c%5Fslidy%2Ehas%5Fclass%28el%2C%22outline%22%29%29%0Areturn%20true%3Bel%3Del%2EparentNode%3B%7D%0Areturn%20false%3B%7D%2Cget%5Fkey%3Afunction%28e%29%0A%7Bvar%20key%3Bif%28typeof%20window%2Eevent%21%3D%22undefined%22%29%0Akey%3Dwindow%2Eevent%2EkeyCode%3Belse%20if%28e%2Ewhich%29%0Akey%3De%2Ewhich%3Breturn%20key%3B%7D%2Cget%5Ftarget%3Afunction%28e%29%7Bvar%20target%3Bif%28%21e%29%0Ae%3Dwindow%2Eevent%3Bif%28e%2Etarget%29%0Atarget%3De%2Etarget%3Belse%20if%28e%2EsrcElement%29%0Atarget%3De%2EsrcElement%3Bif%28target%2EnodeType%21%3D1%29%0Atarget%3Dtarget%2EparentNode%3Breturn%20target%3B%7D%2Cis%5Fblock%3Afunction%28elem%29%7Bvar%20tag%3Delem%2EnodeName%2EtoLowerCase%28%29%3Breturn%20tag%3D%3D%22ol%22%7C%7Ctag%3D%3D%22ul%22%7C%7Ctag%3D%3D%22p%22%7C%7Ctag%3D%3D%22li%22%7C%7Ctag%3D%3D%22table%22%7C%7Ctag%3D%3D%22pre%22%7C%7Ctag%3D%3D%22h1%22%7C%7Ctag%3D%3D%22h2%22%7C%7Ctag%3D%3D%22h3%22%7C%7Ctag%3D%3D%22h4%22%7C%7Ctag%3D%3D%22h5%22%7C%7Ctag%3D%3D%22h6%22%7C%7Ctag%3D%3D%22blockquote%22%7C%7Ctag%3D%3D%22address%22%3B%7D%2Cadd%5Flistener%3Afunction%28element%2Cevent%2Chandler%29%7Bif%28window%2EaddEventListener%29%0Aelement%2EaddEventListener%28event%2Chandler%2Cfalse%29%3Belse%0Aelement%2EattachEvent%28%22on%22%2Bevent%2Chandler%29%3B%7D%2Cstop%5Fpropagation%3Afunction%28event%29%7Bevent%3Devent%3Fevent%3Awindow%2Eevent%3Bevent%2EcancelBubble%3Dtrue%3Bif%28event%2EstopPropagation%29%0Aevent%2EstopPropagation%28%29%3Breturn%20true%3B%7D%2Ccancel%3Afunction%28event%29%7Bif%28event%29%0A%7Bevent%2Ecancel%3Dtrue%3Bevent%2EreturnValue%3Dfalse%3Bif%28event%2EpreventDefault%29%0Aevent%2EpreventDefault%28%29%3B%7D%0Aw3c%5Fslidy%2Ekey%5Fwanted%3Dfalse%3Breturn%20false%3B%7D%2Cstrings%5Fes%3A%7B%22slide%22%3A%22p%E1g%2E%22%2C%22help%3F%22%3A%22Ayuda%22%2C%22contents%3F%22%3A%22%CDndice%22%2C%22table%20of%20contents%22%3A%22tabla%20de%20contenidos%22%2C%22Table%20of%20Contents%22%3A%22Tabla%20de%20Contenidos%22%2C%22restart%20presentation%22%3A%22Reiniciar%20presentaci%F3n%22%2C%22restart%3F%22%3A%22Inicio%22%7D%2Chelp%5Fes%3A%22Utilice%20el%20rat%F3n%2C%20barra%20espaciadora%2C%20teclas%20Izda%2FDcha%2C%20%22%2B%22o%20Re%20p%E1g%20y%20Av%20p%E1g%2E%20Use%20S%20y%20B%20para%20cambiar%20el%20tama%F1o%20de%20fuente%2E%22%2Cstrings%5Fca%3A%7B%22slide%22%3A%22p%E0g%2E%2E%22%2C%22help%3F%22%3A%22Ajuda%22%2C%22contents%3F%22%3A%22%CDndex%22%2C%22table%20of%20contents%22%3A%22taula%20de%20continguts%22%2C%22Table%20of%20Contents%22%3A%22Taula%20de%20Continguts%22%2C%22restart%20presentation%22%3A%22Reiniciar%20presentaci%F3%22%2C%22restart%3F%22%3A%22Inici%22%7D%2Chelp%5Fca%3A%22Utilitzi%20el%20ratol%ED%2C%20barra%20espaiadora%2C%20tecles%20Esq%2E%2FDta%2E%20%22%2B%22o%20Re%20p%E0g%20y%20Av%20p%E0g%2E%20Usi%20S%20i%20B%20per%20canviar%20grand%E0ria%20de%20font%2E%22%2Cstrings%5Fcs%3A%7B%22slide%22%3A%22sn%EDmek%22%2C%22help%3F%22%3A%22n%E1pov%11Bda%22%2C%22contents%3F%22%3A%22obsah%22%2C%22table%20of%20contents%22%3A%22obsah%20prezentace%22%2C%22Table%20of%20Contents%22%3A%22Obsah%20prezentace%22%2C%22restart%20presentation%22%3A%22znovu%20spustit%20prezentaci%22%2C%22restart%3F%22%3A%22restart%22%7D%2Chelp%5Fcs%3A%22Prezentaci%20m%16F%17Eete%20proch%E1zet%20pomoc%ED%20kliknut%ED%20my%161i%2C%20mezern%EDku%2C%20%22%2B%22%161ipek%20vlevo%20a%20vpravo%20nebo%20kl%E1ves%20PageUp%20a%20PageDown%2E%20P%EDsmo%20se%20%22%2B%22d%E1%20zv%11Bt%161it%20a%20zmen%161it%20pomoc%ED%20kl%E1ves%20B%20a%20S%2E%22%2Cstrings%5Fnl%3A%7B%22slide%22%3A%22pagina%22%2C%22help%3F%22%3A%22Help%3F%22%2C%22contents%3F%22%3A%22Inhoud%3F%22%2C%22table%20of%20contents%22%3A%22inhoudsopgave%22%2C%22Table%20of%20Contents%22%3A%22Inhoudsopgave%22%2C%22restart%20presentation%22%3A%22herstart%20presentatie%22%2C%22restart%3F%22%3A%22Herstart%3F%22%7D%2Chelp%5Fnl%3A%22Navigeer%20d%2Em%2Ev%2E%20het%20muis%2C%20spatiebar%2C%20Links%2FRechts%20toetsen%2C%20%22%2B%22of%20PgUp%20en%20PgDn%2E%20Gebruik%20S%20en%20B%20om%20de%20karaktergrootte%20te%20veranderen%2E%22%2Cstrings%5Fde%3A%7B%22slide%22%3A%22Seite%22%2C%22help%3F%22%3A%22Hilfe%22%2C%22contents%3F%22%3A%22%DCbersicht%22%2C%22table%20of%20contents%22%3A%22Inhaltsverzeichnis%22%2C%22Table%20of%20Contents%22%3A%22Inhaltsverzeichnis%22%2C%22restart%20presentation%22%3A%22Pr%E4sentation%20neu%20starten%22%2C%22restart%3F%22%3A%22Neustart%22%7D%2Chelp%5Fde%3A%22Benutzen%20Sie%20die%20Maus%2C%20Leerschlag%2C%20die%20Cursortasten%20links%2Frechts%20oder%20%22%2B%22Page%20up%2FPage%20Down%20zum%20Wechseln%20der%20Seiten%20und%20S%20und%20B%20f%FCr%20die%20Schriftgr%F6sse%2E%22%2Cstrings%5Fpl%3A%7B%22slide%22%3A%22slajd%22%2C%22help%3F%22%3A%22pomoc%3F%22%2C%22contents%3F%22%3A%22spis%20tre%15Bci%3F%22%2C%22table%20of%20contents%22%3A%22spis%20tre%15Bci%22%2C%22Table%20of%20Contents%22%3A%22Spis%20Tre%15Bci%22%2C%22restart%20presentation%22%3A%22Restartuj%20prezentacj%119%22%2C%22restart%3F%22%3A%22restart%3F%22%7D%2Chelp%5Fpl%3A%22Zmieniaj%20slajdy%20klikaj%105c%20mysz%105%2C%20naciskaj%105c%20spacj%119%2C%20strza%142ki%20lewo%2Fprawo%22%2B%22lub%20PgUp%20%2F%20PgDn%2E%20U%17Cyj%20klawiszy%20S%20i%20B%2C%20aby%20zmieni%107%20rozmiar%20czczionki%2E%22%2Cstrings%5Ffr%3A%7B%22slide%22%3A%22page%22%2C%22help%3F%22%3A%22Aide%22%2C%22contents%3F%22%3A%22Index%22%2C%22table%20of%20contents%22%3A%22table%20des%20mati%E8res%22%2C%22Table%20of%20Contents%22%3A%22Table%20des%20mati%E8res%22%2C%22restart%20presentation%22%3A%22Recommencer%20l%27expos%E9%22%2C%22restart%3F%22%3A%22D%E9but%22%7D%2Chelp%5Ffr%3A%22Naviguez%20avec%20la%20souris%2C%20la%20barre%20d%27espace%2C%20les%20fl%E8ches%20%22%2B%22gauche%2Fdroite%20ou%20les%20touches%20Pg%20Up%2C%20Pg%20Dn%2E%20Utilisez%20%22%2B%22les%20touches%20S%20et%20B%20pour%20modifier%20la%20taille%20de%20la%20police%2E%22%2Cstrings%5Fhu%3A%7B%22slide%22%3A%22oldal%22%2C%22help%3F%22%3A%22seg%EDts%E9g%22%2C%22contents%3F%22%3A%22tartalom%22%2C%22table%20of%20contents%22%3A%22tartalomjegyz%E9k%22%2C%22Table%20of%20Contents%22%3A%22Tartalomjegyz%E9k%22%2C%22restart%20presentation%22%3A%22bemutat%F3%20%FAjraind%EDt%E1sa%22%2C%22restart%3F%22%3A%22%FAjraind%EDt%E1s%22%7D%2Chelp%5Fhu%3A%22Az%20oldalak%20k%F6zti%20l%E9pked%E9shez%20kattintson%20az%20eg%E9rrel%2C%20vagy%20%22%2B%22haszn%E1lja%20a%20sz%F3k%F6z%2C%20a%20bal%2C%20vagy%20a%20jobb%20ny%EDl%2C%20illetve%20a%20Page%20Down%2C%20%22%2B%22Page%20Up%20billenty%171ket%2E%20Az%20S%20%E9s%20a%20B%20billenty%171kkel%20v%E1ltoztathatja%20%22%2B%22a%20sz%F6veg%20m%E9ret%E9t%2E%22%2Cstrings%5Fit%3A%7B%22slide%22%3A%22pag%2E%22%2C%22help%3F%22%3A%22Aiuto%22%2C%22contents%3F%22%3A%22Indice%22%2C%22table%20of%20contents%22%3A%22indice%22%2C%22Table%20of%20Contents%22%3A%22Indice%22%2C%22restart%20presentation%22%3A%22Ricominciare%20la%20presentazione%22%2C%22restart%3F%22%3A%22Inizio%22%7D%2Chelp%5Fit%3A%22Navigare%20con%20mouse%2C%20barra%20spazio%2C%20frecce%20sinistra%2Fdestra%20o%20%22%2B%22PgUp%20e%20PgDn%2E%20Usare%20S%20e%20B%20per%20cambiare%20la%20dimensione%20dei%20caratteri%2E%22%2Cstrings%5Fel%3A%7B%22slide%22%3A%22%3C3%3B5%3BB%3AF%3B4%3B1%22%2C%22help%3F%22%3A%22%3B2%3BF%3AE%3B8%3B5%3B9%3B1%3B%22%2C%22contents%3F%22%3A%22%3C0%3B5%3C1%3B9%3B5%3C7%3CC%3BC%3B5%3BD%3B1%3B%22%2C%22table%20of%20contents%22%3A%22%3C0%3AF%3BD%3B1%3BA%3B1%3C2%20%3C0%3B5%3C1%3B9%3B5%3C7%3BF%3BC%3AD%3BD%3C9%3BD%22%2C%22Table%20of%20Contents%22%3A%22%3A0%3AF%3BD%3B1%3BA%3B1%3C2%20%3A0%3B5%3C1%3B9%3B5%3C7%3BF%3BC%3AD%3BD%3C9%3BD%22%2C%22restart%20presentation%22%3A%22%3B5%3C0%3B1%3BD%3B5%3BA%3BA%3AF%3BD%3B7%3C3%3B7%20%3C0%3B1%3C1%3BF%3C5%3C3%3AF%3B1%3C3%3B7%3C2%22%2C%22restart%3F%22%3A%22%3B5%3C0%3B1%3BD%3B5%3BA%3BA%3AF%3BD%3B7%3C3%3B7%3B%22%7D%2Chelp%5Fel%3A%22%3A0%3BB%3BF%3B7%3B3%3B7%3B8%3B5%3AF%3C4%3B5%20%3BC%3B5%20%3C4%3BF%20%3BA%3BB%3AF%3BA%20%3C4%3BF%3C5%20%3C0%3BF%3BD%3C4%3B9%3BA%3B9%3BF%3CD%2C%20%3C4%3BF%20space%2C%20%3C4%3B1%20%3B2%3AD%3BB%3B7%20%3B1%3C1%3B9%3C3%3C4%3B5%3C1%3AC%2F%3B4%3B5%3BE%3B9%3AC%2C%20%22%2B%22%3AE%20Page%20Up%20%3BA%3B1%3B9%20Page%20Down%2E%20%3A7%3C1%3B7%3C3%3B9%3BC%3BF%3C0%3BF%3B9%3AE%3C3%3C4%3B5%20%3C4%3B1%20%3C0%3BB%3AE%3BA%3C4%3C1%3B1%20S%20%3BA%3B1%3B9%20B%20%3B3%3B9%3B1%20%3BD%3B1%20%3B1%3BB%3BB%3AC%3BE%3B5%3C4%3B5%20%22%2B%22%3C4%3BF%20%3BC%3AD%3B3%3B5%3B8%3BF%3C2%20%3C4%3B7%3C2%20%3B3%3C1%3B1%3BC%3BC%3B1%3C4%3BF%3C3%3B5%3B9%3C1%3AC%3C2%2E%22%2Cstrings%5Fja%3A%7B%22slide%22%3A%22%30B9%30E9%30A4%30C9%22%2C%22help%3F%22%3A%22%30D8%30EB%30D7%22%2C%22contents%3F%22%3A%22%76EE%6B21%22%2C%22table%20of%20contents%22%3A%22%76EE%6B21%3092%8868%793A%22%2C%22Table%20of%20Contents%22%3A%22%76EE%6B21%22%2C%22restart%20presentation%22%3A%22%6700%521D%304B%3089%518D%751F%22%2C%22restart%3F%22%3A%22%6700%521D%304B%3089%22%7D%2Chelp%5Fja%3A%22%30DE%30A6%30B9%5DE6%30AF%30EA%30C3%30AF%20%30FB%20%30B9%30DA%30FC%30B9%20%30FB%20%5DE6%53F3%30AD%30FC%20%22%2B%22%307E%305F%306F%20Page%20Up%20%30FB%20Page%20Down%3067%64CD%4F5C%FF0C%20S%20%30FB%20B%3067%30D5%30A9%30F3%30C8%30B5%30A4%30BA%5909%66F4%22%2Cstrings%5Fzh%3A%7B%22slide%22%3A%22%5E7B%706F%7247%22%2C%22help%3F%22%3A%22%5E2E%52A9%3F%22%2C%22contents%3F%22%3A%22%5185%5BB9%3F%22%2C%22table%20of%20contents%22%3A%22%76EE%5F55%22%2C%22Table%20of%20Contents%22%3A%22%76EE%5F55%22%2C%22restart%20presentation%22%3A%22%91CD%65B0%542F%52A8%5C55%793A%22%2C%22restart%3F%22%3A%22%91CD%65B0%542F%52A8%3F%22%7D%2Chelp%5Fzh%3A%22%7528%9F20%6807%70B9%51FB%2C%20%7A7A%683C%6761%2C%20%5DE6%53F3%7BAD%5934%2C%20Pg%20Up%20%548C%20Pg%20Dn%20%5BFC%822A%2E%20%22%2B%22%7528%20S%2C%20B%20%6539%53D8%5B57%4F53%5927%5C0F%2E%22%2Cstrings%5Fru%3A%7B%22slide%22%3A%22%441%43B%430%439%434%22%2C%22help%3F%22%3A%22%43F%43E%43C%43E%449%44C%3F%22%2C%22contents%3F%22%3A%22%441%43E%434%435%440%436%430%43D%438%435%3F%22%2C%22table%20of%20contents%22%3A%22%43E%433%43B%430%432%43B%435%43D%438%435%22%2C%22Table%20of%20Contents%22%3A%22%41E%433%43B%430%432%43B%435%43D%438%435%22%2C%22restart%20presentation%22%3A%22%43F%435%440%435%437%430%43F%443%441%442%438%442%44C%20%43F%440%435%437%435%43D%442%430%446%438%44E%22%2C%22restart%3F%22%3A%22%43F%435%440%435%437%430%43F%443%441%43A%3F%22%7D%2Chelp%5Fru%3A%22%41F%435%440%435%43C%435%449%430%439%442%435%441%44C%20%43A%43B%438%43A%430%44F%20%43C%44B%448%43A%43E%439%2C%20%438%441%43F%43E%43B%44C%437%443%44F%20%43A%43B%430%432%438%448%443%20%43F%440%43E%431%435%43B%2C%20%441%442%440%435%43B%43A%438%22%2B%22%432%43B%435%432%43E%2F%432%43F%440%430%432%43E%20%438%43B%438%20Pg%20Up%20%438%20Pg%20Dn%2E%20%41A%43B%430%432%438%448%438%20S%20%438%20B%20%43C%435%43D%44F%44E%442%20%440%430%437%43C%435%440%20%448%440%438%444%442%430%2E%22%2Cstrings%5Fsv%3A%7B%22slide%22%3A%22sida%22%2C%22help%3F%22%3A%22hj%E4lp%22%2C%22contents%3F%22%3A%22inneh%E5ll%22%2C%22table%20of%20contents%22%3A%22inneh%E5llsf%F6rteckning%22%2C%22Table%20of%20Contents%22%3A%22Inneh%E5llsf%F6rteckning%22%2C%22restart%20presentation%22%3A%22visa%20presentationen%20fr%E5n%20b%F6rjan%22%2C%22restart%3F%22%3A%22b%F6rja%20om%22%7D%2Chelp%5Fsv%3A%22Bl%E4ddra%20med%20ett%20klick%20med%20v%E4nstra%20musknappen%2C%20mellanslagstangenten%2C%20%22%2B%22v%E4nster%2D%20och%20h%F6gerpiltangenterna%20eller%20tangenterna%20Pg%20Up%2C%20Pg%20Dn%2E%20%22%2B%22Anv%E4nd%20tangenterna%20S%20och%20B%20f%F6r%20att%20%E4ndra%20textens%20storlek%2E%22%2Cstrings%3A%7B%7D%2Clocalize%3Afunction%28src%29%7Bif%28src%3D%3D%22%22%29%0Areturn%20src%3Bvar%20s%2Clookup%3Dw3c%5Fslidy%2Estrings%5Bw3c%5Fslidy%2Elang%5D%3Bif%28lookup%29%0A%7Bs%3Dlookup%5Bsrc%5D%3Bif%28s%29%0Areturn%20s%3B%7D%0Avar%20lg%3Dw3c%5Fslidy%2Elang%2Esplit%28%22%2D%22%29%3Bif%28lg%2Elength%3E1%29%0A%7Blookup%3Dw3c%5Fslidy%2Estrings%5Blg%5B0%5D%5D%3Bif%28lookup%29%0A%7Bs%3Dlookup%5Bsrc%5D%3Bif%28s%29%0Areturn%20s%3B%7D%7D%0Areturn%20src%3B%7D%2Cinit%5Flocalization%3Afunction%28%29%7Bvar%20i18n%3Dw3c%5Fslidy%3Bvar%20help%5Ftext%3Dw3c%5Fslidy%2Ehelp%5Ftext%3Bthis%2Estrings%3D%7B%22es%22%3Athis%2Estrings%5Fes%2C%22ca%22%3Athis%2Estrings%5Fca%2C%22cs%22%3Athis%2Estrings%5Fcs%2C%22nl%22%3Athis%2Estrings%5Fnl%2C%22de%22%3Athis%2Estrings%5Fde%2C%22pl%22%3Athis%2Estrings%5Fpl%2C%22fr%22%3Athis%2Estrings%5Ffr%2C%22hu%22%3Athis%2Estrings%5Fhu%2C%22it%22%3Athis%2Estrings%5Fit%2C%22el%22%3Athis%2Estrings%5Fel%2C%22jp%22%3Athis%2Estrings%5Fja%2C%22zh%22%3Athis%2Estrings%5Fzh%2C%22ru%22%3Athis%2Estrings%5Fru%2C%22sv%22%3Athis%2Estrings%5Fsv%7D%2Ci18n%2Estrings%5Fes%5Bhelp%5Ftext%5D%3Di18n%2Ehelp%5Fes%3Bi18n%2Estrings%5Fca%5Bhelp%5Ftext%5D%3Di18n%2Ehelp%5Fca%3Bi18n%2Estrings%5Fcs%5Bhelp%5Ftext%5D%3Di18n%2Ehelp%5Fcs%3Bi18n%2Estrings%5Fnl%5Bhelp%5Ftext%5D%3Di18n%2Ehelp%5Fnl%3Bi18n%2Estrings%5Fde%5Bhelp%5Ftext%5D%3Di18n%2Ehelp%5Fde%3Bi18n%2Estrings%5Fpl%5Bhelp%5Ftext%5D%3Di18n%2Ehelp%5Fpl%3Bi18n%2Estrings%5Ffr%5Bhelp%5Ftext%5D%3Di18n%2Ehelp%5Ffr%3Bi18n%2Estrings%5Fhu%5Bhelp%5Ftext%5D%3Di18n%2Ehelp%5Fhu%3Bi18n%2Estrings%5Fit%5Bhelp%5Ftext%5D%3Di18n%2Ehelp%5Fit%3Bi18n%2Estrings%5Fel%5Bhelp%5Ftext%5D%3Di18n%2Ehelp%5Fel%3Bi18n%2Estrings%5Fja%5Bhelp%5Ftext%5D%3Di18n%2Ehelp%5Fja%3Bi18n%2Estrings%5Fzh%5Bhelp%5Ftext%5D%3Di18n%2Ehelp%5Fzh%3Bi18n%2Estrings%5Fru%5Bhelp%5Ftext%5D%3Di18n%2Ehelp%5Fru%3Bi18n%2Estrings%5Fsv%5Bhelp%5Ftext%5D%3Di18n%2Ehelp%5Fsv%3Bw3c%5Fslidy%2Elang%3Ddocument%2Ebody%2EparentNode%2EgetAttribute%28%22lang%22%29%3Bif%28%21w3c%5Fslidy%2Elang%29%0Aw3c%5Fslidy%2Elang%3Ddocument%2Ebody%2EparentNode%2EgetAttribute%28%22xml%3Alang%22%29%3Bif%28%21w3c%5Fslidy%2Elang%29%0Aw3c%5Fslidy%2Elang%3D%22en%22%3B%7D%7D%3Bif%28w3c%5Fslidy%2Eie6%7C%7Cw3c%5Fslidy%2Eie7%29%0A%7Bdocument%2Ewrite%28%22%3Ciframe%20id%3D%27historyFrame%27%20%22%2B%22src%3D%27javascript%3A%5C%22%3Chtml%22%2B%22%3E%3C%2F%22%2B%22html%3E%5C%22%27%20%22%2B%22height%3D%271%27%20width%3D%271%27%20%22%2B%22style%3D%27position%3Aabsolute%3Bleft%3A%2D800px%27%3E%3C%2Fiframe%3E%22%29%3B%7D%0Aw3c%5Fslidy%2Eset%5Fup%28%29%3BsetTimeout%28w3c%5Fslidy%2Ehide%5Fslides%2C50%29%3B" charset="utf-8" type="text/javascript"></script>
</head>
<body>
<div class="slide titlepage">
<h1 class="title">Tutorial 5: Analytics</h1>
<p class="author">
DPI R Bootcamp
</p>
<p class="date">Jared Knowles</p>
</div>
<div class="section slide level1" id="overview">
<h1>Overview</h1>
<p>In this lesson we hope to learn:</p>
<ul class="incremental">
<li>How to use summary statistics to look at data</li>
<li>How to run basic statistical tests on a dataset</li>
<li>How to use formulas to build a statistical model</li>
<li>Analyze subsets of data</li>
</ul>
<p align="center">
<img src="" height="81" width="138">
</p>
</div>
<div class="section slide level1" id="datasets">
<h1>Datasets</h1>
<p>In this tutorial we will use a number of datasets of different types:</p>
<ul class="incremental">
<li><code>stulong</code>: student-level assessment and demographics data (simulated and research ready)</li>
<li><code>midwest_schools.csv</code>: aggregate school level test score averages from a large Midwest state</li>
</ul>
</div>
<div class="section slide level1" id="reading-data-in">
<h1>Reading Data In</h1>
<ul class="incremental">
<li>We start with the aggregate school level data</li>
</ul>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">load</span>(<span class="st">"data/midwest_schools.rda"</span>)
<span class="kw">head</span>(midsch[, <span class="dv">1</span>:<span class="dv">12</span>])</code></pre>
<pre><code>## district_id school_id subject grade n1 ss1 n2 ss2 predicted
## 1 14 130 math 4 44 433.1 40 463.0 468.7
## 2 70 20 math 4 18 443.0 20 477.2 476.5
## 3 112 80 math 4 86 445.4 94 472.6 478.4
## 4 119 50 math 4 95 427.1 94 460.7 464.1
## 5 147 60 math 4 27 424.2 27 458.7 461.8
## 6 147 125 math 4 17 423.5 26 463.1 461.2
## residuals resid_z resid_t
## 1 -5.7446 -0.59190 -0.59171
## 2 0.7235 0.07456 0.07452
## 3 -5.7509 -0.59267 -0.59248
## 4 -3.3586 -0.34606 -0.34591
## 5 -3.0937 -0.31877 -0.31863
## 6 1.8530 0.19094 0.19085</code></pre>
</div>
<div class="section slide level1" id="what-do-we-have-then">
<h1>What do we have then?</h1>
<ul class="incremental">
<li>We have unique identifiers for districts and schools</li>
<li>For each school/district combination we have a row of test scores in year 1 and year 2 by test_year (of year 1); grade; and subject</li>
<li>How can we use R to ask this?</li>
</ul>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">table</span>(midsch$test_year, midsch$grade)</code></pre>
<pre><code>##
## 4 5 6 7 8
## 2007 1150 1094 472 638 734
## 2008 1204 1146 462 588 692
## 2009 1173 1092 434 592 668
## 2010 1120 1090 428 610 686
## 2011 1126 1060 420 618 688</code></pre>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">length</span>(<span class="kw">unique</span>(midsch$district_id))</code></pre>
<pre><code>## [1] 357</code></pre>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">length</span>(<span class="kw">unique</span>(midsch$school_id))</code></pre>
<pre><code>## [1] 247</code></pre>
<ul class="incremental">
<li>What's wrong with this?</li>
<li>More districts than schools? The IDs must be goofed</li>
<li>We need to create a unique school ID</li>
</ul>
</div>
<div class="section slide level1" id="explore-data-structure-ii">
<h1>Explore Data Structure (II)</h1>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">table</span>(midsch$subject, midsch$grade)</code></pre>
<pre><code>##
## 4 5 6 7 8
## math 2886 2741 1108 1523 1734
## read 2887 2741 1108 1523 1734</code></pre>
<ul class="incremental">
<li>Why don't we want to do <code>table(midsch$district_id,midsch$grade)</code></li>
<li>What else do we want to know?</li>
</ul>
</div>
<div class="section slide level1" id="diagnostic-plots-perhaps">
<h1>Diagnostic Plots Perhaps</h1>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">library</span>(ggplot2)
<span class="kw">qplot</span>(ss1, ss2, <span class="dt">data =</span> midsch, <span class="dt">alpha =</span> <span class="kw">I</span>(<span class="fl">0.07</span>)) + <span class="kw">theme_dpi</span>() + <span class="kw">geom_smooth</span>() +
<span class="kw">geom_smooth</span>(<span class="dt">method =</span> <span class="st">"lm"</span>, <span class="dt">se =</span> <span class="ot">FALSE</span>, <span class="dt">color =</span> <span class="st">"purple"</span>)</code></pre>
<div class="figure">
<img src="" alt="plot of chunk diag1" /><p class="caption">plot of chunk diag1</p>
</div>
</div>
<div class="section slide level1" id="frequencies-crosstabs-and-t-tests">
<h1>Frequencies, Crosstabs, and t-tests</h1>
<ul class="incremental">
<li>Some of the most basic analyses we can implement in R are sometimes the most useful</li>
<li>Before we dive in to linear regression and evaluating a linear regression, we will first look into tests of differences among groups</li>
<li>This is really useful in an education context or for evaluating experiments quickly when we are interested in whether the difference we observe in groups is real, or due to chance</li>
</ul>
</div>
<div class="section slide level1" id="lets-take-a-simple-example-of-cars">
<h1>Let's take a simple example of cars</h1>
<ul class="incremental">
<li>Sometimes we want to compare groups of data to other groups or a fixed value</li>
<li>We use a t-test for this, but only if we believe the data are normally distributed</li>
</ul>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">data</span>(mtcars) <span class="co"># load the data from R</span>
<span class="kw">head</span>(mtcars)</code></pre>
<pre><code>## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1</code></pre>
</div>
<div class="section slide level1" id="check-for-normality">
<h1>Check for normality</h1>
<ul class="incremental">
<li>The Shapiro-Wilk normality test checks this for us:</li>
</ul>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">shapiro.test</span>(mtcars$mpg)</code></pre>
<pre><code>##
## Shapiro-Wilk normality test
##
## data: mtcars$mpg
## W = 0.9476, p-value = 0.1229</code></pre>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">shapiro.test</span>(mtcars$hp)</code></pre>
<pre><code>##
## Shapiro-Wilk normality test
##
## data: mtcars$hp
## W = 0.9334, p-value = 0.04881</code></pre>
<ul class="incremental">
<li>Which of these is normally distributed?</li>
<li>For more on hypothesis testing, see the optional intro to statistics module</li>
</ul>
</div>
<div class="section slide level1" id="t-test">
<h1>T-test</h1>
<ul class="incremental">
<li>We can t-test the <code>mpg</code> variable then</li>
<li>Let's test it against an assumption about the population using a one-sided test</li>
</ul>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">mean</span>(mtcars$mpg)</code></pre>
<pre><code>## [1] 20.09</code></pre>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">t.test</span>(mtcars$mpg, <span class="dt">mu =</span> <span class="dv">18</span>, <span class="dt">alternative =</span> <span class="st">"greater"</span>)</code></pre>
<pre><code>##
## One Sample t-test
##
## data: mtcars$mpg
## t = 1.962, df = 31, p-value = 0.02938
## alternative hypothesis: true mean is greater than 18
## 95 percent confidence interval:
## 18.28 Inf
## sample estimates:
## mean of x
## 20.09</code></pre>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">t.test</span>(mtcars$mpg, <span class="dt">mu =</span> <span class="dv">22</span>, <span class="dt">alternative =</span> <span class="st">"less"</span>)</code></pre>
<pre><code>##
## One Sample t-test
##
## data: mtcars$mpg
## t = -1.792, df = 31, p-value = 0.04144
## alternative hypothesis: true mean is less than 22
## 95 percent confidence interval:
## -Inf 21.9
## sample estimates:
## mean of x
## 20.09</code></pre>
<ul class="incremental">
<li>What does <code>t.test(mtcars$mpg,mu=18)</code> test?</li>
</ul>
</div>
<div class="section slide level1" id="two-sample-t-test">
<h1>Two sample t-test</h1>
<ul class="incremental">
<li>What if we want to compare two groups?</li>
<li>For example cars with and without automatic transmissions</li>
<li>How might we do this?</li>
<li>Look at the documentation?</li>
</ul>
</div>
<div class="section slide level1" id="answer">
<h1>Answer</h1>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">t.test</span>(mpg ~ am, <span class="dt">data =</span> mtcars)</code></pre>
<pre><code>##
## Welch Two Sample t-test
##
## data: mpg by am
## t = -3.767, df = 18.33, p-value = 0.001374
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -11.28 -3.21
## sample estimates:
## mean in group 0 mean in group 1
## 17.15 24.39</code></pre>
</div>
<div class="section slide level1" id="if-data-is-non-normal">
<h1>If data is non-normal</h1>
<ul class="incremental">
<li>You can do <code>wilcox.test(mtcars$hp,mu=102)</code></li>
<li>Or <code>wilcox.test(hp~am,data=mtcars)</code></li>
<li>Just Google it!</li>
</ul>
</div>
<div class="section slide level1" id="chi-square">
<h1>Chi-Square</h1>
<ul class="incremental">
<li>Placebo v. aspirin</li>
<li>Heartattack or no</li>
</ul>
<pre class="sourceCode r"><code class="sourceCode r">aspirin <- <span class="kw">matrix</span>(<span class="kw">c</span>(<span class="dv">189</span>, <span class="dv">104</span>, <span class="dv">10845</span>, <span class="dv">10933</span>), <span class="dt">ncol =</span> <span class="dv">2</span>, <span class="dt">dimnames =</span> <span class="kw">list</span>(<span class="kw">c</span>(<span class="st">"Placebo"</span>,
<span class="st">"Aspirin"</span>), <span class="kw">c</span>(<span class="st">"MI"</span>, <span class="st">"No MI"</span>)))
aspirin</code></pre>
<pre><code>## MI No MI
## Placebo 189 10845
## Aspirin 104 10933</code></pre>
<ul class="incremental">
<li>We want to know how independent from one another heart attacks and taking the placebo are. If it is unlikely that they are independent, then we would conclude these two variables have some relationship in our population (assuming the data was collected well)</li>
</ul>
</div>
<div class="section slide level1" id="test-it">
<h1>Test it</h1>
<ul class="incremental">
<li>To test these we use a chi-squared test statistic</li>
</ul>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">chisq.test</span>(aspirin, <span class="dt">correct =</span> <span class="ot">FALSE</span>)</code></pre>
<pre><code>##
## Pearson's Chi-squared test
##
## data: aspirin
## X-squared = 25.01, df = 1, p-value = 5.692e-07</code></pre>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">fisher.test</span>(aspirin)</code></pre>
<pre><code>##
## Fisher's Exact Test for Count Data
##
## data: aspirin
## p-value = 5.033e-07
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 1.432 2.354
## sample estimates:
## odds ratio
## 1.832</code></pre>
</div>
<div class="section slide level1" id="back-to-school-data">
<h1>Back to School Data</h1>
<ul class="incremental">
<li>Let's imagine that a journalist has used this dataset to detect testing "irregularities" using publicly available aggregate test data</li>
<li>The journalist's methodology is to regress test scores for a school/grade/subject in one year on a school/grade/subject aggregate test score in the next year</li>
<li>For example, 2005-06, 3rd grade, reading scores are regressed on 2006-07, 4th grade, reading scores</li>
<li>Where the observed gains are higher or lower than predicted by this statistical model, "irregularities" are suspected</li>
</ul>
</div>
<div class="section slide level1" id="regression-101">
<h1>Regression 101</h1>
<ul class="incremental">
<li>What is wrong with this approach?</li>
<li>What are the five assumptions of simple linear regression?</li>
</ul>
<ol class="incremental" style="list-style-type: decimal">
<li>Dependent variable has a linear relationship to a combination of independent variables + a disturbance term (no variables omitted)</li>
<li>The expected value of the disturbance term is zero.</li>
<li>Disturbance terms have the same variance and are not correlated with one another.</li>
<li>The observations of the independent variables are considered fixed in repeated samples.</li>
<li>The number of observations exceeds the number of independent variables and no fixed linear combination exists among the independent variables (perfect collinearity)</li>
</ol>
<ul class="incremental">
<li>What are other concerns?</li>
</ul>
<ol class="incremental" style="list-style-type: decimal">
<li>Sensitivity of the model to outliers</li>
<li>Confidence interval around predictions</li>
<li>Validity of the model on key subsets</li>
</ol>
</div>
<div class="section slide level1" id="how-to-approach-this">
<h1>How to approach this?</h1>
<ul class="incremental">
<li>This is a perfect case for exploring the power of R for doing analysis on data and for checking accuracy of results</li>
<li>Two approaches</li>
</ul>
<ol class="incremental" style="list-style-type: decimal">
<li>Work on one test,grade,school_year combination and validate that</li>
<li>Test model assumptions across all combinations</li>
<li>Build one mega model from full data and control for year, grade, and subject</li>
</ol>
</div>
<div class="section slide level1" id="first-step">
<h1>First Step</h1>
<ul class="incremental">
<li>How many unique combinations are there of <code>test_year</code>, <code>grade</code>, and <code>subject</code>?</li>
</ul>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">nrow</span>(<span class="kw">unique</span>(midsch[, <span class="kw">c</span>(<span class="dv">3</span>, <span class="dv">4</span>, <span class="dv">14</span>)]))</code></pre>
<pre><code>## [1] 50</code></pre>
</div>
<div class="section slide level1" id="lets-look-at-one-subset-to-start">
<h1>Let's look at one subset to start</h1>
<p>5th grade, 2011, math scores</p>
<pre class="sourceCode r"><code class="sourceCode r">midsch_sub <- <span class="kw">subset</span>(midsch, midsch$grade == <span class="dv">5</span> & midsch$test_year == <span class="dv">2011</span> &
midsch$subject == <span class="st">"math"</span>)</code></pre>
<ul class="incremental">
<li>How many observations in <code>midsch_sub</code>?</li>
</ul>
</div>
<div class="section slide level1" id="how-to-specify-a-regression-in-r">
<h1>How to specify a regression in R</h1>
<p><code>my_mod<-lm(ss2~ss1,data=midsch_sub)</code></p>
<ul class="incremental">
<li>OLS regression is done by the trusty <code>lm</code> function</li>
<li>The <code>~</code> character divides the dependent variable <code>ss2</code> from the independent variable <code>ss1</code></li>
<li>We want to store the results of our function so we can capture it by <code>my_mod<-</code></li>
<li><code>data</code> means we don't have to write: <code>lm(midsch_sub$ss2~midsch_sub$ss1)</code></li>
</ul>
</div>
<div class="section slide level1" id="run-the-regression">
<h1>Run the regression</h1>
<ul class="incremental">
<li>To implement the regression described above is simple in this framework</li>
</ul>
<pre class="sourceCode r"><code class="sourceCode r">ss_mod <- <span class="kw">lm</span>(ss2 ~ ss1, <span class="dt">data =</span> midsch_sub)
<span class="kw">summary</span>(ss_mod)</code></pre>
<pre><code>##
## Call:
## lm(formula = ss2 ~ ss1, data = midsch_sub)
##
## Residuals:
## Min 1Q Median 3Q Max
## -46.36 -7.60 -0.42 6.49 58.36
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5.1687 11.3446 -0.46 0.65
## ss1 1.0644 0.0242 44.00 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.2 on 528 degrees of freedom
## Multiple R-squared: 0.786, Adjusted R-squared: 0.785
## F-statistic: 1.94e+03 on 1 and 528 DF, p-value: <2e-16</code></pre>
</div>
<div class="section slide level1" id="explore-the-model-output">
<h1>Explore the Model Output</h1>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">objects</span>(ss_mod)</code></pre>
<pre><code>## [1] "assign" "call" "coefficients" "df.residual"
## [5] "effects" "fitted.values" "model" "qr"
## [9] "rank" "residuals" "terms" "xlevels"</code></pre>
<ul class="incremental">
<li>Most of these we can ignore</li>
<li>A few are interesting such as <code>coefficients</code> <code>fitted.values</code> and <code>call</code></li>
<li>Any idea how to access these objects?</li>
</ul>
</div>
<div class="section slide level1" id="omitted-variable">
<h1>Omitted Variable</h1>
<ul class="incremental">
<li>What other data elements do we have available that might be omitted from our model specification?</li>
<li>What about the class size?</li>
<li>Class size is attractive since class size probably correlates with the variability in the change of scores from year 1 to year 2--big classes swing less than small classes</li>
</ul>
</div>
<div class="section slide level1" id="plot-of-class-size">
<h1>Plot of class size</h1>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">qplot</span>(n2, ss2 - ss1, <span class="dt">data =</span> midsch, <span class="dt">alpha =</span> <span class="kw">I</span>(<span class="fl">0.1</span>)) + <span class="kw">theme_dpi</span>() + <span class="kw">geom_smooth</span>()</code></pre>
<div class="figure">
<img src="" alt="plot of chunk diagn" /><p class="caption">plot of chunk diagn</p>
</div>
<ul class="incremental">
<li>Group size might matter</li>
<li>Another type of omitted variable are non-linear terms (polynomials) of the independent variable</li>
</ul>
</div>
<div class="section slide level1" id="how-to-check-formally">
<h1>How to check formally</h1>
<pre class="sourceCode r"><code class="sourceCode r">ssN1_mod <- <span class="kw">lm</span>(ss2 ~ ss1 + n1, <span class="dt">data =</span> midsch_sub)
<span class="kw">summary</span>(ssN1_mod)</code></pre>
<pre><code>##
## Call:
## lm(formula = ss2 ~ ss1 + n1, data = midsch_sub)
##
## Residuals:
## Min 1Q Median 3Q Max
## -45.39 -7.73 -0.52 6.42 59.67
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.6849 11.7688 0.14 0.886
## ss1 1.0450 0.0258 40.49 <2e-16 ***
## n1 0.0406 0.0193 2.10 0.036 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.2 on 527 degrees of freedom
## Multiple R-squared: 0.787, Adjusted R-squared: 0.787
## F-statistic: 976 on 2 and 527 DF, p-value: <2e-16</code></pre>
<pre class="sourceCode r"><code class="sourceCode r">ssN2_mod <- <span class="kw">lm</span>(ss2 ~ ss1 + n2, <span class="dt">data =</span> midsch_sub)
<span class="kw">summary</span>(ssN2_mod)</code></pre>
<pre><code>##
## Call:
## lm(formula = ss2 ~ ss1 + n2, data = midsch_sub)
##
## Residuals:
## Min 1Q Median 3Q Max
## -45.60 -7.62 -0.53 6.52 59.64
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.7971 11.8544 0.15 0.88
## ss1 1.0450 0.0260 40.12 <2e-16 ***
## n2 0.0377 0.0192 1.97 0.05 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.2 on 527 degrees of freedom
## Multiple R-squared: 0.787, Adjusted R-squared: 0.786
## F-statistic: 975 on 2 and 527 DF, p-value: <2e-16</code></pre>
</div>
<div class="section slide level1" id="f-test">
<h1>F Test</h1>
<ul class="incremental">
<li>Both n1 and n2 seemed to matter, or potentially to matter</li>
<li>How can we test this formally?</li>
</ul>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">anova</span>(ss_mod, ssN1_mod, ssN2_mod)</code></pre>
<pre><code>## Analysis of Variance Table
##
## Model 1: ss2 ~ ss1
## Model 2: ss2 ~ ss1 + n1
## Model 3: ss2 ~ ss1 + n2
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 528 66239
## 2 527 65688 1 551 4.42 0.036 *
## 3 527 65755 0 -67
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</code></pre>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">AIC</span>(ssN2_mod)</code></pre>
<pre><code>## [1] 4067</code></pre>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">AIC</span>(ssN1_mod)</code></pre>
<pre><code>## [1] 4067</code></pre>
<ul class="incremental">
<li>No difference between <code>n1</code> and <code>n2</code> but either improves model fit over the model without it</li>
</ul>
</div>
<div class="section slide level1" id="diagnostic-check-for-linearity">
<h1>Diagnostic Check for Linearity</h1>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">library</span>(lmtest)
<span class="kw">resettest</span>(ss_mod, <span class="dt">power =</span> <span class="dv">2</span>:<span class="dv">4</span>)</code></pre>
<pre><code>##
## RESET test
##
## data: ss_mod
## RESET = 2.642, df1 = 3, df2 = 525, p-value = 0.04866</code></pre>
<ul class="incremental">
<li>Statistically significant</li>
</ul>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">raintest</span>(ss2 ~ ss1, <span class="dt">fraction =</span> <span class="fl">0.5</span>, <span class="dt">order.by =</span> ~ss1, <span class="dt">data =</span> midsch_sub)</code></pre>
<pre><code>##
## Rainbow test
##
## data: ss2 ~ ss1
## Rain = 1.402, df1 = 265, df2 = 263, p-value = 0.003105</code></pre>
<ul class="incremental">
<li>Statistically significant</li>
</ul>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">harvtest</span>(ss2 ~ ss1, <span class="dt">order.by =</span> ~ss1, <span class="dt">data =</span> midsch_sub)</code></pre>
<pre><code>##
## Harvey-Collier test
##
## data: ss2 ~ ss1
## HC = 2.734, df = 527, p-value = 0.006462</code></pre>
<ul class="incremental">
<li>Statistically significant</li>
<li>This is not a good sign for our model.</li>
</ul>
</div>
<div class="section slide level1" id="adjust-for-linearity">
<h1>Adjust for linearity</h1>
<ul class="incremental">
<li>No need to despair, we can quickly test a couple easy adjustments for non-linearity</li>
<li>First, let's just include polynomial terms of our predictor</li>
</ul>
<pre class="sourceCode r"><code class="sourceCode r">ss_poly <- <span class="kw">lm</span>(ss2 ~ ss1 + <span class="kw">I</span>(ss1^<span class="dv">2</span>) + <span class="kw">I</span>(ss1^<span class="dv">3</span>) + <span class="kw">I</span>(ss1^<span class="dv">4</span>), <span class="dt">data =</span> midsch_sub)
<span class="kw">summary</span>(ss_poly)</code></pre>
<pre><code>##
## Call:
## lm(formula = ss2 ~ ss1 + I(ss1^2) + I(ss1^3) + I(ss1^4), data = midsch_sub)
##
## Residuals:
## Min 1Q Median 3Q Max
## -44.89 -6.92 -0.20 6.76 59.66
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.61e+03 3.61e+04 0.07 0.94
## ss1 -8.72e+00 3.18e+02 -0.03 0.98
## I(ss1^2) -9.51e-03 1.05e+00 -0.01 0.99
## I(ss1^3) 7.21e-05 1.54e-03 0.05 0.96
## I(ss1^4) -6.98e-08 8.42e-07 -0.08 0.93
##
## Residual standard error: 11.1 on 525 degrees of freedom
## Multiple R-squared: 0.789, Adjusted R-squared: 0.787
## F-statistic: 490 on 4 and 525 DF, p-value: <2e-16</code></pre>
<ul class="incremental">
<li>Ok, now what?</li>
</ul>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">anova</span>(ss_mod, ss_poly)</code></pre>
<pre><code>## Analysis of Variance Table
##
## Model 1: ss2 ~ ss1
## Model 2: ss2 ~ ss1 + I(ss1^2) + I(ss1^3) + I(ss1^4)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 528 66239
## 2 525 65253 3 985 2.64 0.049 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</code></pre>
</div>
<div class="section slide level1" id="is-this-polynomial-model-still-nonlinear">
<h1>Is this polynomial model still nonlinear?</h1>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">resettest</span>(ss_poly, <span class="dt">power =</span> <span class="dv">2</span>:<span class="dv">4</span>)</code></pre>
<pre><code>##
## RESET test
##
## data: ss_poly
## RESET = 1.562, df1 = 3, df2 = 522, p-value = 0.1976</code></pre>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">raintest</span>(ss2 ~ ss1 + <span class="kw">I</span>(ss1^<span class="dv">2</span>) + <span class="kw">I</span>(ss1^<span class="dv">3</span>) + <span class="kw">I</span>(ss1^<span class="dv">4</span>), <span class="dt">fraction =</span> <span class="fl">0.5</span>, <span class="dt">order.by =</span> ~ss1,
<span class="dt">data =</span> midsch_sub)</code></pre>
<pre><code>##
## Rainbow test
##
## data: ss2 ~ ss1 + I(ss1^2) + I(ss1^3) + I(ss1^4)
## Rain = 1.392, df1 = 265, df2 = 260, p-value = 0.003804</code></pre>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">harvtest</span>(ss2 ~ ss1 + <span class="kw">I</span>(ss1^<span class="dv">2</span>) + <span class="kw">I</span>(ss1^<span class="dv">3</span>) + <span class="kw">I</span>(ss1^<span class="dv">4</span>), <span class="dt">order.by =</span> ~ss1, <span class="dt">data =</span> midsch_sub)</code></pre>
<pre><code>##
## Harvey-Collier test
##
## data: ss2 ~ ss1 + I(ss1^2) + I(ss1^3) + I(ss1^4)
## HC = NaN, df = 524, p-value = NA</code></pre>
<ul class="incremental">
<li>We don't eliminate all the problems</li>
</ul>
</div>
<div class="section slide level1" id="what-if-we-include-our-omitted-variable">
<h1>What if we include our omitted variable?</h1>
<pre class="sourceCode r"><code class="sourceCode r">ss_polyn <- <span class="kw">lm</span>(ss2 ~ ss1 + <span class="kw">I</span>(ss1^<span class="dv">2</span>) + <span class="kw">I</span>(ss1^<span class="dv">3</span>) + <span class="kw">I</span>(ss1^<span class="dv">4</span>) + n2, <span class="dt">data =</span> midsch_sub)
<span class="kw">anova</span>(ss_mod, ssN2_mod, ss_poly, ss_polyn)</code></pre>
<pre><code>## Analysis of Variance Table
##
## Model 1: ss2 ~ ss1
## Model 2: ss2 ~ ss1 + n2
## Model 3: ss2 ~ ss1 + I(ss1^2) + I(ss1^3) + I(ss1^4)
## Model 4: ss2 ~ ss1 + I(ss1^2) + I(ss1^3) + I(ss1^4) + n2
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 528 66239
## 2 527 65755 1 483 3.91 0.049 *
## 3 525 65253 2 502 2.03 0.133
## 4 524 64842 1 411 3.32 0.069 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</code></pre>
<ul class="incremental">
<li>Promising</li>
</ul>
</div>
<div class="section slide level1" id="non-linearity-tests">
<h1>Non-linearity tests</h1>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">resettest</span>(ss_polyn, <span class="dt">power =</span> <span class="dv">2</span>:<span class="dv">4</span>)</code></pre>
<pre><code>##
## RESET test
##
## data: ss_polyn
## RESET = 2.485, df1 = 3, df2 = 521, p-value = 0.05991</code></pre>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">raintest</span>(ss2 ~ ss1 + <span class="kw">I</span>(ss1^<span class="dv">2</span>) + <span class="kw">I</span>(ss1^<span class="dv">3</span>) + <span class="kw">I</span>(ss1^<span class="dv">4</span>) + n2, <span class="dt">fraction =</span> <span class="fl">0.5</span>, <span class="dt">order.by =</span> ~ss1,
<span class="dt">data =</span> midsch_sub)</code></pre>
<pre><code>##
## Rainbow test
##
## data: ss2 ~ ss1 + I(ss1^2) + I(ss1^3) + I(ss1^4) + n2
## Rain = 1.381, df1 = 265, df2 = 259, p-value = 0.004606</code></pre>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">harvtest</span>(ss2 ~ ss1 + <span class="kw">I</span>(ss1^<span class="dv">2</span>) + <span class="kw">I</span>(ss1^<span class="dv">3</span>) + <span class="kw">I</span>(ss1^<span class="dv">4</span>) + n2, <span class="dt">order.by =</span> ~ss1, <span class="dt">data =</span> midsch_sub)</code></pre>
<pre><code>##
## Harvey-Collier test
##
## data: ss2 ~ ss1 + I(ss1^2) + I(ss1^3) + I(ss1^4) + n2
## HC = NA, df = 523, p-value = NA</code></pre>
<ul class="incremental">
<li>Yipes, nope, this isn't going to fix it.</li>
</ul>
</div>
<div class="section slide level1" id="another-way-to-explore-non-linearity">
<h1>Another way to explore non-linearity</h1>
<ul class="incremental">
<li>Why might student test scores have a non-linear relationship?</li>
<li>Tests are goofy at the low and high end of the scale, partly due to design, partly due to regression toward the mean</li>
<li>How can we check if this is occurring in our data?</li>
<li>We can use quantile regression, to fit different models to different subsets of the data and see if they are different</li>
</ul>
</div>
<div class="section slide level1" id="diagnostic-check-for-quantile-regression">
<h1>Diagnostic Check for Quantile Regression</h1>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">library</span>(quantreg)
ss_quant <- <span class="kw">rq</span>(ss2 ~ ss1, <span class="dt">tau =</span> <span class="kw">c</span>(<span class="kw">seq</span>(<span class="fl">0.1</span>, <span class="fl">0.9</span>, <span class="fl">0.1</span>)), <span class="dt">data =</span> midsch_sub)
<span class="kw">plot</span>(<span class="kw">summary</span>(ss_quant, <span class="dt">se =</span> <span class="st">"boot"</span>, <span class="dt">method =</span> <span class="st">"wild"</span>))</code></pre>
<div class="figure">
<img src="" alt="plot of chunk quantileregression" /><p class="caption">plot of chunk quantileregression</p>
</div>
</div>
<div class="section slide level1" id="results">
<h1>Results</h1>
<ul class="incremental">
<li><code>ss_quant</code> shows that in the lower quantiles the coefficients for the intercept and <code>ss1</code> fall outside the confidence interval around the base coefficient</li>
<li>This suggests the relationship may vary in a statistically significant fashion at the high and low end of the scales, evidence of systematic non-linearity</li>
</ul>
</div>
<div class="section slide level1" id="robustness">
<h1>Robustness</h1>
<pre class="sourceCode r"><code class="sourceCode r">ss_quant2 <- <span class="kw">rq</span>(ss2 ~ ss1 + <span class="kw">I</span>(ss1^<span class="dv">2</span>) + <span class="kw">I</span>(ss1^<span class="dv">3</span>) + <span class="kw">I</span>(ss1^<span class="dv">4</span>) + n2, <span class="dt">tau =</span> <span class="kw">c</span>(<span class="kw">seq</span>(<span class="fl">0.1</span>,
<span class="fl">0.9</span>, <span class="fl">0.1</span>)), <span class="dt">data =</span> midsch_sub)
<span class="kw">plot</span>(<span class="kw">summary</span>(ss_quant2, <span class="dt">se =</span> <span class="st">"boot"</span>, <span class="dt">method =</span> <span class="st">"wild"</span>))</code></pre>
<div class="figure">
<img src="" alt="plot of chunk quantileregression2" /><p class="caption">plot of chunk quantileregression2</p>
</div>
<ul class="incremental">
<li>The polynomials seem to address some of our concern about non-linearity in this manner, but remember, don't eliminate other symptoms of non-linearity</li>
</ul>
</div>
<div class="section slide level1" id="showing-off">
<h1>Showing Off</h1>
<pre class="sourceCode r"><code class="sourceCode r">ss_quant3 <- <span class="kw">rq</span>(ss2 ~ ss1, <span class="dt">tau =</span> -<span class="dv">1</span>, <span class="dt">data =</span> midsch_sub)
<span class="kw">qplot</span>(ss_quant3$sol[<span class="dv">1</span>, ], ss_quant3$sol[<span class="dv">5</span>, ], <span class="dt">geom =</span> <span class="st">"line"</span>, <span class="dt">main =</span> <span class="st">"Continuous Quantiles"</span>) +
<span class="kw">theme_dpi</span>() + <span class="kw">xlab</span>(<span class="st">"Quantile"</span>) + <span class="kw">ylab</span>(<span class="kw">expression</span>(beta)) + <span class="kw">geom_hline</span>(<span class="dt">yintercept =</span> <span class="kw">coef</span>(<span class="kw">summary</span>(ss_mod))[<span class="dv">2</span>,
<span class="dv">1</span>]) + <span class="kw">geom_hline</span>(<span class="dt">yintercept =</span> <span class="kw">coef</span>(<span class="kw">summary</span>(ss_mod))[<span class="dv">2</span>, <span class="dv">1</span>] + (<span class="dv">2</span> * <span class="kw">coef</span>(<span class="kw">summary</span>(ss_mod))[<span class="dv">2</span>,
<span class="dv">2</span>]), <span class="dt">linetype =</span> <span class="dv">3</span>) + <span class="kw">geom_hline</span>(<span class="dt">yintercept =</span> <span class="kw">coef</span>(<span class="kw">summary</span>(ss_mod))[<span class="dv">2</span>, <span class="dv">1</span>] -
(<span class="dv">2</span> * <span class="kw">coef</span>(<span class="kw">summary</span>(ss_mod))[<span class="dv">2</span>, <span class="dv">2</span>]), <span class="dt">linetype =</span> <span class="dv">3</span>)</code></pre>
<div class="figure">
<img src="" alt="plot of chunk betterquantileplot" /><p class="caption">plot of chunk betterquantileplot</p>
</div>
</div>
<div class="section slide level1" id="showing-off-2">
<h1>Showing Off 2</h1>
<pre class="sourceCode r"><code class="sourceCode r">ss_quant4 <- <span class="kw">rq</span>(ss2 ~ ss1 + <span class="kw">I</span>(ss1^<span class="dv">2</span>) + <span class="kw">I</span>(ss1^<span class="dv">3</span>) + <span class="kw">I</span>(ss1^<span class="dv">4</span>) + n2, <span class="dt">tau =</span> -<span class="dv">1</span>, <span class="dt">data =</span> midsch_sub)
<span class="kw">qplot</span>(ss_quant4$sol[<span class="dv">1</span>, ], ss_quant4$sol[<span class="dv">5</span>, ], <span class="dt">geom =</span> <span class="st">"line"</span>, <span class="dt">main =</span> <span class="st">"Continuous Quantiles"</span>) +
<span class="kw">theme_dpi</span>() + <span class="kw">xlab</span>(<span class="st">"Quantile"</span>) + <span class="kw">ylab</span>(<span class="kw">expression</span>(beta)) + <span class="kw">geom_hline</span>(<span class="dt">yintercept =</span> <span class="kw">coef</span>(<span class="kw">summary</span>(ss_mod))[<span class="dv">2</span>,
<span class="dv">1</span>]) + <span class="kw">geom_hline</span>(<span class="dt">yintercept =</span> <span class="kw">coef</span>(<span class="kw">summary</span>(ss_mod))[<span class="dv">2</span>, <span class="dv">1</span>] + (<span class="dv">2</span> * <span class="kw">coef</span>(<span class="kw">summary</span>(ss_mod))[<span class="dv">2</span>,
<span class="dv">2</span>]), <span class="dt">linetype =</span> <span class="dv">3</span>) + <span class="kw">geom_hline</span>(<span class="dt">yintercept =</span> <span class="kw">coef</span>(<span class="kw">summary</span>(ss_mod))[<span class="dv">2</span>, <span class="dv">1</span>] -
(<span class="dv">2</span> * <span class="kw">coef</span>(<span class="kw">summary</span>(ss_mod))[<span class="dv">2</span>, <span class="dv">2</span>]), <span class="dt">linetype =</span> <span class="dv">3</span>)</code></pre>
<div class="figure">
<img src="" alt="plot of chunk betterquantileplot2" /><p class="caption">plot of chunk betterquantileplot2</p>
</div>
</div>
<div class="section slide level1" id="test-all-50-models">
<h1>Test all 50 models</h1>
<ul class="incremental">
<li>This is just one of the fifty models we identified at the start</li>
<li>How do we test them all?</li>
<li>With a function and <code>dlply</code></li>
</ul>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">library</span>(plyr)
midsch$id <- <span class="kw">interaction</span>(midsch$test_year, midsch$grade, midsch$subject)
mods <- <span class="kw">dlply</span>(midsch, .(id), lm, <span class="dt">formula =</span> ss2 ~ ss1)
<span class="kw">objects</span>(mods)[<span class="dv">1</span>:<span class="dv">10</span>]</code></pre>
<pre><code>## [1] "2007.4.math" "2007.4.read" "2007.5.math" "2007.5.read" "2007.6.math"
## [6] "2007.6.read" "2007.7.math" "2007.7.read" "2007.8.math" "2007.8.read"</code></pre>
</div>
<div class="section slide level1" id="now-we-have-fifty-models-in-an-object">
<h1>Now we have fifty models in an object</h1>
<ul class="incremental">
<li>We need to test each one of them</li>
<li>Sound tedious?</li>
<li>R can easily do this as well</li>
</ul>
<pre class="sourceCode r"><code class="sourceCode r">mytest <- <span class="kw">llply</span>(mods, function(x) <span class="kw">resettest</span>(x, <span class="dt">power =</span> <span class="dv">2</span>:<span class="dv">4</span>))
mytest[[<span class="dv">1</span>]]</code></pre>
<pre><code>##
## RESET test
##
## data: x
## RESET = 2.499, df1 = 3, df2 = 570, p-value = 0.05876</code></pre>
<pre class="sourceCode r"><code class="sourceCode r">mytest[[<span class="dv">2</span>]]</code></pre>
<pre><code>##
## RESET test
##
## data: x
## RESET = 0.8864, df1 = 3, df2 = 597, p-value = 0.4478</code></pre>
<ul class="incremental">
<li>OK, not that easy!</li>
</ul>
</div>
<div class="section slide level1" id="test-residuals">
<h1>Test Residuals</h1>
<pre class="sourceCode r"><code class="sourceCode r">a1 <- <span class="kw">qplot</span>(id, residmean, <span class="dt">data =</span> <span class="kw">ddply</span>(midsch, .(id), summarize, <span class="dt">residmean =</span> <span class="kw">mean</span>(residuals)),
<span class="dt">geom =</span> <span class="st">"bar"</span>, <span class="dt">main =</span> <span class="st">"Provided Residuals"</span>) + <span class="kw">theme_dpi</span>() + <span class="kw">opts</span>(<span class="dt">axis.text.x =</span> <span class="kw">theme_blank</span>(),
<span class="dt">axis.ticks =</span> <span class="kw">theme_blank</span>()) + <span class="kw">ylab</span>(<span class="st">"Mean of Residuals"</span>) + <span class="kw">xlab</span>(<span class="st">"Model"</span>) +
<span class="kw">geom_text</span>(<span class="kw">aes</span>(<span class="dt">x =</span> <span class="dv">12</span>, <span class="dt">y =</span> <span class="fl">0.3</span>), <span class="dt">label =</span> <span class="st">"SD of Residuals = 9"</span>)
a2 <- <span class="kw">qplot</span>(id, V1, <span class="dt">data =</span> <span class="kw">ldply</span>(mods, function(x) <span class="kw">mean</span>(x$residuals)), <span class="dt">geom =</span> <span class="st">"bar"</span>,
<span class="dt">main =</span> <span class="st">"Replication Models"</span>) + <span class="kw">theme_dpi</span>() + <span class="kw">opts</span>(<span class="dt">axis.text.x =</span> <span class="kw">theme_blank</span>(),
<span class="dt">axis.ticks =</span> <span class="kw">theme_blank</span>()) + <span class="kw">ylab</span>(<span class="st">"Mean of Residuals"</span>) + <span class="kw">xlab</span>(<span class="st">"Model"</span>) +
<span class="kw">geom_text</span>(<span class="kw">aes</span>(<span class="dt">x =</span> <span class="dv">7</span>, <span class="dt">y =</span> <span class="fl">0.3</span>), <span class="dt">label =</span> <span class="kw">paste</span>(<span class="st">"SD ="</span>, <span class="kw">round</span>(<span class="kw">mean</span>(<span class="kw">ldply</span>(mods,
function(x) <span class="kw">sd</span>(x$residuals))$V1), <span class="dv">2</span>)))
<span class="kw">grid.arrange</span>(a1, a2, <span class="dt">main =</span> <span class="st">"Comparing Replication and Provided Residual Means by Model"</span>)</code></pre>
<div class="figure">
<img src="" alt="plot of chunk residplot1" /><p class="caption">plot of chunk residplot1</p>
</div>
</div>
<div class="section slide level1" id="test-expected-value-of-residuals">
<h1>Test Expected Value of Residuals</h1>
<ul class="incremental">
<li>A key thing is that the residuals sum to 0</li>
</ul>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">qplot</span>(residuals, <span class="dt">data =</span> midsch, <span class="dt">geom =</span> <span class="st">"density"</span>) + <span class="kw">stat_function</span>(<span class="dt">fun =</span> dnorm,
<span class="kw">aes</span>(<span class="dt">colour =</span> <span class="st">"Normal"</span>)) + <span class="kw">geom_histogram</span>(<span class="kw">aes</span>(<span class="dt">y =</span> ..density..), <span class="dt">alpha =</span> <span class="kw">I</span>(<span class="fl">0.4</span>)) +
<span class="kw">geom_line</span>(<span class="kw">aes</span>(<span class="dt">y =</span> ..density.., <span class="dt">colour =</span> <span class="st">"Empirical"</span>), <span class="dt">stat =</span> <span class="st">"density"</span>) +
<span class="kw">scale_colour_manual</span>(<span class="dt">name =</span> <span class="st">"Density"</span>, <span class="dt">values =</span> <span class="kw">c</span>(<span class="st">"red"</span>, <span class="st">"blue"</span>)) + <span class="kw">opts</span>(<span class="dt">legend.position =</span> <span class="kw">c</span>(<span class="fl">0.85</span>,
<span class="fl">0.85</span>)) + <span class="kw">theme_dpi</span>()</code></pre>
<div class="figure">
<img src="" alt="plot of chunk residplot" /><p class="caption">plot of chunk residplot</p>
</div>
</div>
<div class="section slide level1" id="residuals-have-uniform-variance">
<h1>Residuals Have Uniform Variance</h1>
<pre class="sourceCode r"><code class="sourceCode r">b <- <span class="dv">2</span> * <span class="kw">rnorm</span>(<span class="dv">5000</span>)
c <- b + <span class="kw">runif</span>(<span class="dv">5000</span>)
dem <- <span class="kw">lm</span>(c ~ b)
a1 <- <span class="kw">qplot</span>(midsch$ss1, <span class="kw">abs</span>(midsch$residuals), <span class="dt">main =</span> <span class="st">"Residual Plot of Replication Data"</span>,
<span class="dt">geom =</span> <span class="st">"point"</span>, <span class="dt">alpha =</span> <span class="kw">I</span>(<span class="fl">0.1</span>)) + <span class="kw">geom_smooth</span>(<span class="dt">method =</span> <span class="st">"lm"</span>, <span class="dt">se =</span> <span class="ot">TRUE</span>) +
<span class="kw">xlab</span>(<span class="st">"SS1"</span>) + <span class="kw">ylab</span>(<span class="st">"Residuals"</span>) + <span class="kw">geom_smooth</span>(<span class="dt">se =</span> <span class="ot">FALSE</span>) + <span class="kw">ylim</span>(<span class="kw">c</span>(<span class="dv">0</span>, <span class="dv">50</span>)) +
<span class="kw">theme_dpi</span>()
a2 <- <span class="kw">qplot</span>(b, <span class="kw">abs</span>(<span class="kw">lm</span>(c ~ b)$residuals), <span class="dt">main =</span> <span class="st">"Well Specified OLS"</span>, <span class="dt">alpha =</span> <span class="kw">I</span>(<span class="fl">0.3</span>)) +
<span class="kw">theme_dpi</span>() + <span class="kw">geom_smooth</span>()
<span class="kw">grid.arrange</span>(a1, a2, <span class="dt">ncol =</span> <span class="dv">2</span>)</code></pre>
<div class="figure">
<img src="" alt="plot of chunk perfectmodel" /><p class="caption">plot of chunk perfectmodel</p>
</div>
</div>
<div class="section slide level1" id="empirical-tests">
<h1>Empirical Tests</h1>
<ul class="incremental">
<li>We can do two tests, Breusch-Pagan and the Goldfeld-Quandt test to test for non-standard error variance</li>
<li>Again, in R these are simple to use</li>
</ul>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">bptest</span>(ss_mod)</code></pre>
<pre><code>##
## studentized Breusch-Pagan test
##
## data: ss_mod
## BP = 7.499, df = 1, p-value = 0.006172</code></pre>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">gqtest</span>(ss_mod)</code></pre>
<pre><code>##
## Goldfeld-Quandt test
##
## data: ss_mod
## GQ = 0.8302, df1 = 263, df2 = 263, p-value = 0.9341</code></pre>
</div>
<div class="section slide level1" id="correcting-for-heteroskedacticity">
<h1>Correcting for Heteroskedacticity</h1>
<ul class="incremental">
<li>After all it only messes up the standard errors, not the estimates themselves</li>
</ul>
</div>
<div class="section slide level1" id="accuracy-of-predictions">
<h1>Accuracy of Predictions</h1>
<ul class="incremental">
<li>Even if the regression models fit the assumptions above, a somewhat heroic assumption, they still might not be accurate!</li>
<li>What are some good ways to address accuracy and outlier sensitivity?</li>
<li>R model diagnostics can be easily run on any <code>lm</code> object</li>
</ul>
</div>
<div class="section slide level1" id="convenience-functions">
<h1>Convenience Functions</h1>
<ul class="incremental">
<li>Using <code>ggplot2</code> we can run something called <code>fortify</code> on our linear model to get a data frame that tells us a lot of diagnostics about each observation</li>
<li>Example:</li>
</ul>
<pre class="sourceCode r"><code class="sourceCode r">damodel <- <span class="kw">fortify</span>(ss_mod)
<span class="kw">summary</span>(damodel)</code></pre>
<pre><code>## ss2 ss1 .hat .sigma
## Min. :416 Min. :392 Min. :0.00189 Min. :10.9
## 1st Qu.:478 1st Qu.:457 1st Qu.:0.00207 1st Qu.:11.2
## Median :495 Median :471 Median :0.00275 Median :11.2
## Mean :494 Mean :468 Mean :0.00377 Mean :11.2
## 3rd Qu.:510 3rd Qu.:483 3rd Qu.:0.00416 3rd Qu.:11.2
## Max. :560 Max. :511 Max. :0.02920 Max. :11.2
## .cooksd .fitted .resid .stdresid
## Min. :0.00000 Min. :412 Min. :-46.36 Min. :-4.148
## 1st Qu.:0.00015 1st Qu.:481 1st Qu.: -7.60 1st Qu.:-0.680
## Median :0.00062 Median :496 Median : -0.42 Median :-0.038
## Mean :0.00225 Mean :494 Mean : 0.00 Mean : 0.000
## 3rd Qu.:0.00179 3rd Qu.:509 3rd Qu.: 6.49 3rd Qu.: 0.581
## Max. :0.06596 Max. :539 Max. : 58.36 Max. : 5.218</code></pre>
</div>
<div class="section slide level1" id="what-do-we-get">
<h1>What do we get?</h1>
<ul class="incremental">
<li><code>dv</code> <code>iv</code> <code>.hat</code> <code>.sigma</code> <code>.cooksd</code> <code>.fitted</code> <code>.resid</code> and <code>.stdresid</code></li>
<li>Some are obvious: <code>.fitted</code> is the prediction from our model</li>
<li><code>.resid</code> = <code>dv</code> - <code>.fitted</code></li>
<li><code>.stdresid</code> = normalized <code>.resid</code></li>
<li><code>.sigma</code> = estimate of residual standard deviation when observation is dropped from the model</li>
<li><code>.hat</code> is more obscure, but is a measure of the influence an individual observation has on overall model fit</li>
</ul>
</div>
<div class="section slide level1" id="so-how-do-we-use-this">
<h1>So, how do we use this?</h1>
<ul class="incremental">
<li>Visual inspection is the best in this case</li>
<li>It's easy to implement, easy to interpret, and easy to explain to others</li>
<li>Watch: let's look at an ideal linear regression model</li>
</ul>
<pre class="sourceCode r"><code class="sourceCode r">a <- <span class="kw">rnorm</span>(<span class="dv">500</span>)
b <- <span class="kw">runif</span>(<span class="dv">500</span>)
c <- a + b
goodsim <- <span class="kw">lm</span>(c ~ a)
goodsim_a <- <span class="kw">fortify</span>(goodsim)
<span class="kw">qplot</span>(c, .hat, <span class="dt">data =</span> goodsim_a) + <span class="kw">theme_dpi</span>() + <span class="kw">geom_smooth</span>(<span class="dt">se =</span> <span class="ot">FALSE</span>)</code></pre>
<div class="figure">
<img src="" alt="plot of chunk simulatedgoodmodel" /><p class="caption">plot of chunk simulatedgoodmodel</p>
</div>
</div>
<div class="section slide level1" id="lets-look-at-our-model">
<h1>Let's look at our model</h1>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">qplot</span>(ss2, .hat, <span class="dt">data =</span> damodel) + <span class="kw">theme_dpi</span>() + <span class="kw">geom_smooth</span>(<span class="dt">se =</span> <span class="ot">FALSE</span>)</code></pre>
<div class="figure">
<img src="" alt="plot of chunk nonsim" /><p class="caption">plot of chunk nonsim</p>
</div>
<ul class="incremental">
<li>The deviation here is quite stark</li>
</ul>
</div>
<div class="section slide level1" id="compare-and-contrast">
<h1>Compare and contrast</h1>
<pre class="sourceCode r"><code class="sourceCode r">a <- <span class="kw">qplot</span>(c, .hat, <span class="dt">data =</span> goodsim_a) + <span class="kw">theme_dpi</span>() + <span class="kw">geom_smooth</span>(<span class="dt">se =</span> <span class="ot">FALSE</span>)
b <- <span class="kw">qplot</span>(ss2, .hat, <span class="dt">data =</span> damodel) + <span class="kw">theme_dpi</span>() + <span class="kw">geom_smooth</span>(<span class="dt">se =</span> <span class="ot">FALSE</span>)
<span class="kw">grid.arrange</span>(a, b, <span class="dt">ncol =</span> <span class="dv">2</span>)</code></pre>
<img src="" title="plot of chunk comparisonplot" alt="plot of chunk comparisonplot" width="800px" height="570px" />
<ul class="incremental">
<li>These are different, but what do they tell us?</li>
<li>Points with a high <code>hat</code> value are what we call "high leverage" observations, and on their own are not bad--in fact our good model has lots of them</li>
<li>They help keep the model robust to outliers</li>
<li>What do you notice about our replication model's outliers?</li>
</ul>
</div>
<div class="section slide level1" id="one-step-further">
<h1>One step further</h1>
<ul class="incremental">
<li>A rule of thumb is that observations greater than hat of 3x the mean hat value are troubling</li>
</ul>
<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">qplot</span>(ss2, .hat, <span class="dt">data =</span> damodel) + <span class="kw">theme_dpi</span>() + <span class="kw">geom_smooth</span>(<span class="dt">se =</span> <span class="ot">FALSE</span>) + <span class="kw">geom_hline</span>(<span class="dt">yintercept =</span> <span class="dv">3</span> *
<span class="kw">mean</span>(damodel$.hat), <span class="dt">color =</span> <span class="kw">I</span>(<span class="st">"red"</span>), <span class="dt">size =</span> <span class="kw">I</span>(<span class="fl">1.1</span>))</code></pre>
<div class="figure">
<img src="" alt="plot of chunk diagnosticplot" /><p class="caption">plot of chunk diagnosticplot</p>
</div>
<ul class="incremental">
<li>Yikes!</li>
</ul>
</div>
<div class="section slide level1" id="checking-this-systematically">
<h1>Checking this systematically</h1>
<ul class="incremental">
<li>First, a nasty chunk of R code</li>
</ul>
<pre class="sourceCode r"><code class="sourceCode r">infobs <- <span class="kw">which</span>(<span class="kw">apply</span>(<span class="kw">influence.measures</span>(ss_mod)$is.inf, <span class="dv">1</span>, any))
ssdata <- <span class="kw">cbind</span>(<span class="kw">fortify</span>(ss_mod), midsch_sub)
ssdata$id3 <- <span class="kw">paste</span>(ssdata$district_id, ssdata$school_id, <span class="dt">sep =</span> <span class="st">"."</span>)
noinf <- <span class="kw">lm</span>(ss2 ~ ss1, <span class="dt">data =</span> midsch_sub[-infobs, ])
noinff <- <span class="kw">fortify</span>(noinf)</code></pre>
</div>
<div class="section slide level1" id="then-a-plot">
<h1>Then a plot</h1>
<pre class="sourceCode r"><code class="sourceCode r">
<span class="kw">qplot</span>(ss1, ss2, <span class="dt">data =</span> ssdata, <span class="dt">alpha =</span> <span class="kw">I</span>(<span class="fl">0.5</span>)) + <span class="kw">geom_line</span>(<span class="kw">aes</span>(ss1, .fitted,
<span class="dt">group =</span> <span class="dv">1</span>), <span class="dt">data =</span> ssdata, <span class="dt">size =</span> <span class="kw">I</span>(<span class="fl">1.02</span>)) + <span class="kw">geom_line</span>(<span class="kw">aes</span>(<span class="dt">x =</span> ss1, <span class="dt">y =</span> .fitted,
<span class="dt">group =</span> <span class="dv">1</span>), <span class="dt">data =</span> noinff, <span class="dt">linetype =</span> <span class="dv">6</span>, <span class="dt">size =</span> <span class="fl">1.1</span>, <span class="dt">color =</span> <span class="st">"blue"</span>) + <span class="kw">theme_dpi</span>() +
<span class="kw">xlab</span>(<span class="st">"SS1"</span>) + <span class="kw">ylab</span>(<span class="st">"Y"</span>)</code></pre>
<div class="figure">
<img src="" alt="plot of chunk infobsplot" /><p class="caption">plot of chunk infobsplot</p>
</div>
</div>
<div class="section slide level1" id="what-have-we-learned">
<h1>What have we learned?</h1>
<ul class="incremental">
<li>Regression in R is easy</li>
<li>Regression is easy to get wrong</li>
</ul>
</div>
<div class="section slide level1" id="what-might-we-do-different-to-address-these-concerns">
<h1>What might we do different to address these concerns?</h1>
<ul class="incremental">
<li>Well, there is nesting in our data that is being ignored</li>
<li>Also, by fitting fifty separate models we are not efficiently using our data</li>
<li>Let's look at some quick easy strategies to address that concern</li>
<li>Let's start with the megamodel</li>
</ul>
</div>
<div class="section slide level1" id="megamodel-i">
<h1>Megamodel I</h1>
<pre class="sourceCode r"><code class="sourceCode r">my_megamod <- <span class="kw">lm</span>(ss2 ~ ss1 + grade + test_year + subject, <span class="dt">data =</span> midsch)
<span class="kw">summary</span>(my_megamod)</code></pre>
<pre><code>##
## Call:
## lm(formula = ss2 ~ ss1 + grade + test_year + subject, data = midsch)
##
## Residuals:
## Min 1Q Median 3Q Max
## -83.58 -6.38 0.69 6.93 62.80
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 415.92105 108.01823 3.85 0.00012 ***
## ss1 0.89548 0.00321 278.85 < 2e-16 ***
## grade -0.72909 0.08014 -9.10 < 2e-16 ***
## test_year -0.16754 0.05380 -3.11 0.00185 **
## subjectread -11.53144 0.15245 -75.64 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 10.7 on 19980 degrees of freedom
## Multiple R-squared: 0.9, Adjusted R-squared: 0.9
## F-statistic: 4.5e+04 on 4 and 19980 DF, p-value: <2e-16</code></pre>
<ul class="incremental">
<li>What's wrong with this?</li>
</ul>
</div>
<div class="section slide level1" id="megamodel-ii">
<h1>Megamodel II</h1>
<pre class="sourceCode r"><code class="sourceCode r">my_megamod2 <- <span class="kw">lm</span>(ss2 ~ ss1 + <span class="kw">as.factor</span>(grade) + <span class="kw">as.factor</span>(test_year) + subject,
<span class="dt">data =</span> midsch)
<span class="kw">summary</span>(my_megamod2)</code></pre>
<pre><code>##
## Call:
## lm(formula = ss2 ~ ss1 + as.factor(grade) + as.factor(test_year) +
## subject, data = midsch)
##
## Residuals:
## Min 1Q Median 3Q Max
## -77.43 -5.78 0.36 6.18 60.16
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 72.93813 1.35590 53.79 < 2e-16 ***
## ss1 0.91197 0.00306 298.17 < 2e-16 ***
## as.factor(grade)5 -8.39756 0.20701 -40.57 < 2e-16 ***
## as.factor(grade)6 -0.69535 0.27917 -2.49 0.013 *
## as.factor(grade)7 -2.92812 0.29120 -10.06 < 2e-16 ***
## as.factor(grade)8 -7.64546 0.32318 -23.66 < 2e-16 ***
## as.factor(test_year)2008 -3.08623 0.22493 -13.72 < 2e-16 ***
## as.factor(test_year)2009 -0.46178 0.22667 -2.04 0.042 *
## as.factor(test_year)2010 -1.86967 0.22716 -8.23 < 2e-16 ***
## as.factor(test_year)2011 -1.49652 0.22769 -6.57 5.1e-11 ***
## subjectread -11.59171 0.14416 -80.41 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 10.2 on 19974 degrees of freedom
## Multiple R-squared: 0.911, Adjusted R-squared: 0.911
## F-statistic: 2.04e+04 on 10 and 19974 DF, p-value: <2e-16</code></pre>
</div>