Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

How to adjust LoRA into nn.ConvTranspose2d? #160

Open
vanmeruso opened this issue Mar 5, 2024 · 3 comments
Open

How to adjust LoRA into nn.ConvTranspose2d? #160

vanmeruso opened this issue Mar 5, 2024 · 3 comments

Comments

@vanmeruso
Copy link

vanmeruso commented Mar 5, 2024

How can i adjust LoRA into nn.ConvTranspose2d?

In Convnd, There are _conv_forward but, in ConvTransposeNd has no _conv_forward.

Tasks

Preview Give feedback
No tasks being tracked yet.
@vanmeruso
Copy link
Author

vanmeruso commented Mar 5, 2024

In torch 1.10.0, I write some Convtranspose2d Lora code like

class ConvTransposeLoRA(nn.Module, lora.LoRALayer):
def init(self, conv_module, in_channels, out_channels, kernel_size, r=0, lora_alpha=1, lora_dropout=0., merge_weights=True, **kwargs):
super(ConvTransposeLoRA, self).init()
self.conv = conv_module(in_channels, out_channels, kernel_size, **kwargs)
lora.LoRALayer.init(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, merge_weights=merge_weights)
assert isinstance(kernel_size, int)
# Actual trainable parameters
if r > 0:
self.lora_A = nn.Parameter(
self.conv.weight.new_zeros((r * kernel_size, in_channels * kernel_size))
)
self.lora_B = nn.Parameter(
self.conv.weight.new_zeros((out_channels//self.conv.groupskernel_size, rkernel_size))
)
self.scaling = self.lora_alpha / self.r
# Freezing the pre-trained weight matrix
self.conv.weight.requires_grad = False
self.reset_parameters()
self.merged = False

def reset_parameters(self):
    self.conv.reset_parameters()
    if hasattr(self, 'lora_A'):
        # initialize A the same way as the default for nn.Linear and B to zero
        nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
        nn.init.zeros_(self.lora_B)

def train(self, mode=True):
    super(lora.ConvLoRA, self).train(mode)
    if mode:
        if self.merge_weights and self.merged:
            if self.r > 0:
                # Make sure that the weights are not merged
                self.conv.weight.data -= (self.lora_B @ self.lora_A).view(self.conv.weight.shape) * self.scaling
            self.merged = False
    else:
        if self.merge_weights and not self.merged:
            if self.r > 0:
                # Merge the weights and mark it
                self.conv.weight.data += (self.lora_B @ self.lora_A).view(self.conv.weight.shape) * self.scaling
            self.merged = True

def forward(self, x, output_size = None):
    if self.r > 0 and not self.merged:
        num_spatial_dims = 2

        output_padding = self.conv._output_padding(
        input = x, output_size = output_size, stride = self.conv.stride, padding = self.conv.padding, kernel_size = self.conv.kernel_size, 
        dilation = self.conv.dilation)  

        return F.conv_transpose2d(
        x, self.conv.weight + (self.lora_B @ self.lora_A).view(self.conv.weight.shape) * self.scaling, self.conv.bias, self.conv.stride, self.conv.padding,output_padding, self.conv.groups, self.conv.dilation)

    return self.conv(x, output_size)

@meeselizabeth
Copy link

I keep getting error "conv object has no attribute '_output_padding', do you know how I could solve this?

@xianggkl
Copy link

Met the same question. Do u solve this and could u provide the relevant codes please?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants