Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

EP_FAIL : Non-zero status code returned while running Conv node. Name:'/features/features.0/Conv' Status Message: Failed to initialize CUDNN Frontend #23301

Open
m0hammadjaan opened this issue Jan 9, 2025 · 9 comments
Assignees
Labels
ep:CUDA issues related to the CUDA execution provider

Comments

@m0hammadjaan
Copy link

I have an EC2 instance of type g5g.xlarge. I have installed the following:

CUDA-Toolit: Cuda compilation tools, release 12.4, V12.4.131
CUDNN Version: 9.6.0
Python: 3.12
Pytorch: Compiled from source as for aarch64 v2.5 is not available.
Onnxruntime: Compiled from source as the distrubution package is not available for the architecture
Architecture: aarch64
OS: Amazon Linux 2023

On the following code:

def to_numpy(tensor):
    return tensor.detach().gpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()

# compute ONNX Runtime output prediction
ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(input_batch)}
ort_outs = ort_session.run(None, ort_inputs)

I am getting the following Error:

EP Error: [ONNXRuntimeError] : 11 : EP_FAIL : Non-zero status code returned while running Conv node. Name:'/features/features.0/Conv' Status Message: Failed to initialize CUDNN Frontend/home/ec2-user/onnxruntime/onnxruntime/core/providers/cuda/cudnn_fe_call.cc:99 std::conditional_t<THRW, void, onnxruntime::common::Status> onnxruntime::CudaCall(ERRTYPE, const char*, const char*, SUCCTYPE, const char*, const char*, int) [with ERRTYPE = cudnn_frontend::error_object; bool THRW = true; SUCCTYPE = cudnn_frontend::error_code_t; std::conditional_t<THRW, void, onnxruntime::common::Status> = void] /home/ec2-user/onnxruntime/onnxruntime/core/providers/cuda/cudnn_fe_call.cc:91 std::conditional_t<THRW, void, onnxruntime::common::Status> onnxruntime::CudaCall(ERRTYPE, const char*, const char*, SUCCTYPE, const char*, const char*, int) [with ERRTYPE = cudnn_frontend::error_object; bool THRW = true; SUCCTYPE = cudnn_frontend::error_code_t; std::conditional_t<THRW, void, onnxruntime::common::Status> = void] CUDNN_FE failure 11: CUDNN_BACKEND_API_FAILED ; GPU=0 ; hostname=sg-gpu-1 ; file=/home/ec2-user/onnxruntime/onnxruntime/core/providers/cuda/nn/conv.cc ; line=224 ; expr=s_.cudnn_fe_graph->build_operation_graph(handle); 


with the cudnn frontend json:
{"context":{"compute_data_type":"FLOAT","intermediate_data_type":"FLOAT","io_data_type":"FLOAT","name":"","sm_count":-1},"cudnn_backend_version":"9.6.0","cudnn_frontend_version":10700,"json_version":"1.0","nodes":[{"compute_data_type":"FLOAT","dilation":[1,1],"inputs":{"W":"w","X":"x"},"math_mode":"CROSS_CORRELATION","name":"","outputs":{"Y":"::Y"},"post_padding":[2,2],"pre_padding":[2,2],"stride":[4,4],"tag":"CONV_FPROP"}],"tensors":{"::Y":{"data_type":"FLOAT","dim":[1,64,55,55],"is_pass_by_value":false,"is_virtual":false,"name":"::Y","pass_by_value":null,"reordering_type":"NONE","stride":[193600,3025,55,1],"uid":0,"uid_assigned":false},"w":{"data_type":"FLOAT","dim":[64,3,11,11],"is_pass_by_value":false,"is_virtual":false,"name":"w","pass_by_value":null,"reordering_type":"NONE","stride":[363,121,11,1],"uid":1,"uid_assigned":true},"x":{"data_type":"FLOAT","dim":[1,3,224,224],"is_pass_by_value":false,"is_virtual":false,"name":"x","pass_by_value":null,"reordering_type":"NONE","stride":[150528,50176,224,1],"uid":0,"uid_assigned":false}}} using ['CUDAExecutionProvider', 'CPUExecutionProvider']
Falling back to ['CPUExecutionProvider'] and retrying.
2025-01-08 12:06:10.797719929 [E:onnxruntime:Default, cudnn_fe_call.cc:33 CudaErrString<cudnn_frontend::error_object>] CUDNN_BACKEND_TENSOR_DESCRIPTOR cudnnFinalize failed cudnn_status: CUDNN_STATUS_SUBLIBRARY_LOADING_FAILED
2025-01-08 12:06:10.797924540 [E:onnxruntime:, sequential_executor.cc:516 ExecuteKernel] Non-zero status code returned while running Conv node. Name:'/features/features.0/Conv' Status Message: Failed to initialize CUDNN Frontend/home/ec2-user/onnxruntime/onnxruntime/core/providers/cuda/cudnn_fe_call.cc:99 std::conditional_t<THRW, void, onnxruntime::common::Status> onnxruntime::CudaCall(ERRTYPE, const char*, const char*, SUCCTYPE, const char*, const char*, int) [with ERRTYPE = cudnn_frontend::error_object; bool THRW = true; SUCCTYPE = cudnn_frontend::error_code_t; std::conditional_t<THRW, void, onnxruntime::common::Status> = void] /home/ec2-user/onnxruntime/onnxruntime/core/providers/cuda/cudnn_fe_call.cc:91 std::conditional_t<THRW, void, onnxruntime::common::Status> onnxruntime::CudaCall(ERRTYPE, const char*, const char*, SUCCTYPE, const char*, const char*, int) [with ERRTYPE = cudnn_frontend::error_object; bool THRW = true; SUCCTYPE = cudnn_frontend::error_code_t; std::conditional_t<THRW, void, onnxruntime::common::Status> = void] CUDNN_FE failure 11: CUDNN_BACKEND_API_FAILED ; GPU=0 ; hostname=sg-gpu-1 ; file=/home/ec2-user/onnxruntime/onnxruntime/core/providers/cuda/nn/conv.cc ; line=224 ; expr=s_.cudnn_fe_graph->build_operation_graph(handle); 

with the cudnn frontend json:
{"context":{"compute_data_type":"FLOAT","intermediate_data_type":"FLOAT","io_data_type":"FLOAT","name":"","sm_count":-1},"cudnn_backend_version":"9.6.0","cudnn_frontend_version":10700,"json_version":"1.0","nodes":[{"compute_data_type":"FLOAT","dilation":[1,1],"inputs":{"W":"w","X":"x"},"math_mode":"CROSS_CORRELATION","name":"","outputs":{"Y":"::Y"},"post_padding":[2,2],"pre_padding":[2,2],"stride":[4,4],"tag":"CONV_FPROP"}],"tensors":{"::Y":{"data_type":"FLOAT","dim":[1,64,55,55],"is_pass_by_value":false,"is_virtual":false,"name":"::Y","pass_by_value":null,"reordering_type":"NONE","stride":[193600,3025,55,1],"uid":0,"uid_assigned":false},"w":{"data_type":"FLOAT","dim":[64,3,11,11],"is_pass_by_value":false,"is_virtual":false,"name":"w","pass_by_value":null,"reordering_type":"NONE","stride":[363,121,11,1],"uid":1,"uid_assigned":true},"x":{"data_type":"FLOAT","dim":[1,3,224,224],"is_pass_by_value":false,"is_virtual":false,"name":"x","pass_by_value":null,"reordering_type":"NONE","stride":[150528,50176,224,1],"uid":0,"uid_assigned":false}}}

However, prints from the below code confirms that the installation is done perfectly:

print("Pytorch CUDA:", torch.cuda.is_available())
print("Available Providers:", onnxruntime.get_available_providers())
print("Active Providers for this session:", ort_session.get_providers())

Output:

Pytorch CUDA: True
Available Providers: ['CUDAExecutionProvider', 'CPUExecutionProvider']
Active Providers for this session: ['CUDAExecutionProvider', 'CPUExecutionProvider']

In order to resolve this, I have installed the nvidia_cudnn_frontend v1.9.0 from the source. Still it is not resolved.

nvidia-smi is working. Its version is: NVIDIA-SMI 550.127.08
nvcc is also working fine.

nvidia-cudnn-frontend==1.9.0
nvtx==0.2.10
onnx==1.17.0
onnxruntime-gpu==1.20.1
optree==0.13.1
torch==2.5.0a0+gita8d6afb
torchaudio==2.5.1
torchvision==0.20.1

Versions

Collecting environment information...
PyTorch version: 2.5.0a0+gita8d6afb
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A

OS: Amazon Linux 2023.6.20241212 (aarch64)
GCC version: (GCC) 11.4.1 20230605 (Red Hat 11.4.1-2)
Clang version: Could not collect
CMake version: version 3.31.2
Libc version: glibc-2.34

Python version: 3.12.0 (main, Jan  5 2025, 18:22:01) [GCC 11.4.1 20230605 (Red Hat 11.4.1-2)] (64-bit runtime)
Python platform: Linux-6.1.119-129.201.amzn2023.aarch64-aarch64-with-glibc2.34
Is CUDA available: True
CUDA runtime version: 12.4.131
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA T4G
Nvidia driver version: 550.127.08
cuDNN version: Probably one of the following:
/usr/local/cuda-12.4/targets/sbsa-linux/lib/libcudnn.so.9
/usr/local/cuda-12.4/targets/sbsa-linux/lib/libcudnn_adv.so.9
/usr/local/cuda-12.4/targets/sbsa-linux/lib/libcudnn_cnn.so.9
/usr/local/cuda-12.4/targets/sbsa-linux/lib/libcudnn_engines_precompiled.so.9
/usr/local/cuda-12.4/targets/sbsa-linux/lib/libcudnn_engines_runtime_compiled.so.9
/usr/local/cuda-12.4/targets/sbsa-linux/lib/libcudnn_graph.so.9
/usr/local/cuda-12.4/targets/sbsa-linux/lib/libcudnn_heuristic.so.9
/usr/local/cuda-12.4/targets/sbsa-linux/lib/libcudnn_ops.so.9
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                         aarch64
CPU op-mode(s):                       32-bit, 64-bit
Byte Order:                           Little Endian
CPU(s):                               4
On-line CPU(s) list:                  0-3
Vendor ID:                            ARM
Model name:                           Neoverse-N1
Model:                                1
Thread(s) per core:                   1
Core(s) per socket:                   4
Socket(s):                            1
Stepping:                             r3p1
BogoMIPS:                             243.75
Flags:                                fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm lrcpc dcpop asimddp
L1d cache:                            256 KiB (4 instances)
L1i cache:                            256 KiB (4 instances)
L2 cache:                             4 MiB (4 instances)
L3 cache:                             32 MiB (1 instance)
NUMA node(s):                         1
NUMA node0 CPU(s):                    0-3
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Not affected
Vulnerability Spec rstack overflow:   Not affected
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:             Mitigation; __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; CSV2, BHB
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected

Versions of relevant libraries:
[pip3] numpy==1.26.3
[pip3] nvidia-cudnn-frontend==1.9.0
[pip3] nvtx==0.2.10
[pip3] onnx==1.17.0
[pip3] onnxruntime-gpu==1.20.1
[pip3] optree==0.13.1
[pip3] torch==2.5.0a0+gita8d6afb
[pip3] torchaudio==2.5.1
[pip3] torchvision==0.20.1
[conda] Could not collect
@m0hammadjaan
Copy link
Author

I also build the onnxruntime-gpu == 1.20.0 and the got the same error on the same place.

@github-actions github-actions bot added ep:ROCm questions/issues related to ROCm execution provider ep:Xnnpack issues related to XNNPACK EP labels Jan 9, 2025
@snnn snnn added ep:CUDA issues related to the CUDA execution provider and removed ep:Xnnpack issues related to XNNPACK EP ep:ROCm questions/issues related to ROCm execution provider labels Jan 9, 2025
@snnn
Copy link
Member

snnn commented Jan 9, 2025

@tianleiwu , it is related to cudnn frontend.

@m0hammadjaan
Copy link
Author

@snnn @tianleiwu any update on this issue...

@tianleiwu
Copy link
Contributor

tianleiwu commented Jan 14, 2025

@m0hammadjaan, please try add some environment variable to collect cudnn debug log:

export CUDNN_FRONTEND_LOG_FLIE=stdout
export CUDNN_FRONTEND_LOG_INFO=1
export CUDNN_LOGLEVEL_DBG=3
export CUDNN_LOGDEST_DBG=stdout

Then run your tests.

CUDNN_STATUS_SUBLIBRARY_LOADING_FAILED means it cannot load a sub library (.so), and I think it is likely an environment setup issue (try add /usr/local/cuda-12.4/targets/sbsa-linux/lib/ to LD_LIBRARY_PATH environment variable).

@m0hammadjaan
Copy link
Author

@tianleiwu I set these environmental variables and still getting the same error. Then I try to add /usr/local/cuda-12.4/targets/sbsa-linux/lib/ to LD_LIBRARY_PATH along with other variables and stilll getting the same error.

stdout
1
3
stdout
/usr/local/cuda-12.4/targets/sbsa-linux/lib/:/usr/local/cuda-12.4/lib64
EP Error: [ONNXRuntimeError] : 11 : EP_FAIL : Non-zero status code returned while running Conv node. Name:'/features/features.0/Conv' Status Message: Failed to initialize CUDNN Frontend/home/t_mjan/onnxruntime/onnxruntime/core/providers/cuda/cudnn_fe_call.cc:99 std::conditional_t<THRW, void, onnxruntime::common::Status> onnxruntime::CudaCall(ERRTYPE, const char*, const char*, SUCCTYPE, const char*, const char*, int) [with ERRTYPE = cudnn_frontend::error_object; bool THRW = true; SUCCTYPE = cudnn_frontend::error_code_t; std::conditional_t<THRW, void, onnxruntime::common::Status> = void] /home/t_mjan/onnxruntime/onnxruntime/core/providers/cuda/cudnn_fe_call.cc:91 std::conditional_t<THRW, void, onnxruntime::common::Status> onnxruntime::CudaCall(ERRTYPE, const char*, const char*, SUCCTYPE, const char*, const char*, int) [with ERRTYPE = cudnn_frontend::error_object; bool THRW = true; SUCCTYPE = cudnn_frontend::error_code_t; std::conditional_t<THRW, void, onnxruntime::common::Status> = void] CUDNN_FE failure 11: CUDNN_BACKEND_API_FAILED ; GPU=0 ; hostname=sg-gpu-1 ; file=/home/t_mjan/onnxruntime/onnxruntime/core/providers/cuda/nn/conv.cc ; line=224 ; expr=s_.cudnn_fe_graph->build_operation_graph(handle); 

with the cudnn frontend json:
{"context":{"compute_data_type":"FLOAT","intermediate_data_type":"FLOAT","io_data_type":"FLOAT","name":"","sm_count":-1},"cudnn_backend_version":"9.6.0","cudnn_frontend_version":10700,"json_version":"1.0","nodes":[{"compute_data_type":"FLOAT","dilation":[1,1],"inputs":{"W":"w","X":"x"},"math_mode":"CROSS_CORRELATION","name":"","outputs":{"Y":"::Y"},"post_padding":[2,2],"pre_padding":[2,2],"stride":[4,4],"tag":"CONV_FPROP"}],"tensors":{"::Y":{"data_type":"FLOAT","dim":[1,64,55,55],"is_pass_by_value":false,"is_virtual":false,"name":"::Y","pass_by_value":null,"reordering_type":"NONE","stride":[193600,3025,55,1],"uid":0,"uid_assigned":false},"w":{"data_type":"FLOAT","dim":[64,3,11,11],"is_pass_by_value":false,"is_virtual":false,"name":"w","pass_by_value":null,"reordering_type":"NONE","stride":[363,121,11,1],"uid":1,"uid_assigned":true},"x":{"data_type":"FLOAT","dim":[1,3,224,224],"is_pass_by_value":false,"is_virtual":false,"name":"x","pass_by_value":null,"reordering_type":"NONE","stride":[150528,50176,224,1],"uid":0,"uid_assigned":false}}} using ['CUDAExecutionProvider', 'CPUExecutionProvider']
Falling back to ['CPUExecutionProvider'] and retrying.
2025-01-14 14:25:19.871049140 [E:onnxruntime:Default, cudnn_fe_call.cc:33 CudaErrString<cudnn_frontend::error_object>] CUDNN_BACKEND_TENSOR_DESCRIPTOR cudnnFinalize failed cudnn_status: CUDNN_STATUS_SUBLIBRARY_LOADING_FAILED
2025-01-14 14:25:19.871387856 [E:onnxruntime:, sequential_executor.cc:516 ExecuteKernel] Non-zero status code returned while running Conv node. Name:'/features/features.0/Conv' Status Message: Failed to initialize CUDNN Frontend/home/t_mjan/onnxruntime/onnxruntime/core/providers/cuda/cudnn_fe_call.cc:99 std::conditional_t<THRW, void, onnxruntime::common::Status> onnxruntime::CudaCall(ERRTYPE, const char*, const char*, SUCCTYPE, const char*, const char*, int) [with ERRTYPE = cudnn_frontend::error_object; bool THRW = true; SUCCTYPE = cudnn_frontend::error_code_t; std::conditional_t<THRW, void, onnxruntime::common::Status> = void] /home/t_mjan/onnxruntime/onnxruntime/core/providers/cuda/cudnn_fe_call.cc:91 std::conditional_t<THRW, void, onnxruntime::common::Status> onnxruntime::CudaCall(ERRTYPE, const char*, const char*, SUCCTYPE, const char*, const char*, int) [with ERRTYPE = cudnn_frontend::error_object; bool THRW = true; SUCCTYPE = cudnn_frontend::error_code_t; std::conditional_t<THRW, void, onnxruntime::common::Status> = void] CUDNN_FE failure 11: CUDNN_BACKEND_API_FAILED ; GPU=0 ; hostname=sg-gpu-1 ; file=/home/t_mjan/onnxruntime/onnxruntime/core/providers/cuda/nn/conv.cc ; line=224 ; expr=s_.cudnn_fe_graph->build_operation_graph(handle); 

with the cudnn frontend json:
{"context":{"compute_data_type":"FLOAT","intermediate_data_type":"FLOAT","io_data_type":"FLOAT","name":"","sm_count":-1},"cudnn_backend_version":"9.6.0","cudnn_frontend_version":10700,"json_version":"1.0","nodes":[{"compute_data_type":"FLOAT","dilation":[1,1],"inputs":{"W":"w","X":"x"},"math_mode":"CROSS_CORRELATION","name":"","outputs":{"Y":"::Y"},"post_padding":[2,2],"pre_padding":[2,2],"stride":[4,4],"tag":"CONV_FPROP"}],"tensors":{"::Y":{"data_type":"FLOAT","dim":[1,64,55,55],"is_pass_by_value":false,"is_virtual":false,"name":"::Y","pass_by_value":null,"reordering_type":"NONE","stride":[193600,3025,55,1],"uid":0,"uid_assigned":false},"w":{"data_type":"FLOAT","dim":[64,3,11,11],"is_pass_by_value":false,"is_virtual":false,"name":"w","pass_by_value":null,"reordering_type":"NONE","stride":[363,121,11,1],"uid":1,"uid_assigned":true},"x":{"data_type":"FLOAT","dim":[1,3,224,224],"is_pass_by_value":false,"is_virtual":false,"name":"x","pass_by_value":null,"reordering_type":"NONE","stride":[150528,50176,224,1],"uid":0,"uid_assigned":false}}}

@tianleiwu
Copy link
Contributor

@m0hammadjaan, when you installed cudnn-front-end (although not needed by ORT) from source, did you verify that the installation is good following https://github.com/NVIDIA/cudnn-frontend?tab=readme-ov-file#checking-the-installation?

You can check DLL (*.so) loading like

export LD_DEBUG=libs
python your_script.py

OR

strace -e file python your_script.py 2> strace_output.txt

You shall be able to see which *.so file failed to load during your test.

@m0hammadjaan
Copy link
Author

@tianleiwu, yes I have followed the same README that you have mentioned. Furthermore the strace output looks as following:

openat(AT_FDCWD, "/usr/local/cuda-12.4/targets/sbsa-linux/lib/libonnxruntime_providers_cuda.so", O_RDONLY|O_CLOEXEC) = 44
openat(AT_FDCWD, "/usr/local/cuda-12.4/targets/sbsa-linux/lib/libcudnn.so.9", O_RDONLY|O_CLOEXEC) = 44
openat(AT_FDCWD, "/usr/local/cuda-12.4/targets/sbsa-linux/lib/libcudnn_adv.so.9", O_RDONLY|O_CLOEXEC) = 44
openat(AT_FDCWD, "/usr/local/cuda-12.4/targets/sbsa-linux/lib/libcudnn_ops.so.9", O_RDONLY|O_CLOEXEC) = 44
openat(AT_FDCWD, "/usr/local/cuda-12.4/targets/sbsa-linux/lib/libcudnn_cnn.so.9", O_RDONLY|O_CLOEXEC) = 44
openat(AT_FDCWD, "/usr/local/cuda-12.4/targets/sbsa-linux/lib/libcudnn_graph.so.9", O_RDONLY|O_CLOEXEC) = 44
openat(AT_FDCWD, "/usr/local/cuda-12.4/targets/sbsa-linux/lib/libcudnn_engines_runtime_compiled.so.9", O_RDONLY|O_CLOEXEC) = 44
openat(AT_FDCWD, "/usr/local/cuda-12.4/targets/sbsa-linux/lib/libcudnn_engines_precompiled.so.9", O_RDONLY|O_CLOEXEC) = 44
openat(AT_FDCWD, "/usr/local/cuda-12.4/targets/sbsa-linux/lib/libcudnn_heuristic.so.9", O_RDONLY|O_CLOEXEC) = 44
openat(AT_FDCWD, "/usr/local/cuda-12.4/targets/sbsa-linux/lib/libnvrtc.so.12", O_RDONLY|O_CLOEXEC) = 44
openat(AT_FDCWD, "/usr/local/cuda-12.4/targets/sbsa-linux/lib/libcudnn_graph.so.9.6.0", O_RDONLY|O_CLOEXEC) = 44
openat(AT_FDCWD, "/usr/local/cuda-12.4/targets/sbsa-linux/lib/libcudnn_ops.so.9.6.0", O_RDONLY|O_CLOEXEC) = 44
openat(AT_FDCWD, "/usr/local/cuda-12.4/targets/sbsa-linux/lib/libcudnn_engines_precompiled.so.9.6.0", O_RDONLY|O_CLOEXEC) = 44
newfstatat(AT_FDCWD, "/etc/localtime", {st_mode=S_IFREG|0644, st_size=114, ...}, 0) = 0
newfstatat(AT_FDCWD, "/etc/localtime", {st_mode=S_IFREG|0644, st_size=114, ...}, 0) = 0
�[1;31m2025-01-16 10:28:54.219682349 [E:onnxruntime:Default, cudnn_fe_call.cc:33 CudaErrString<cudnn_frontend::error_object>] CUDNN_BACKEND_TENSOR_DESCRIPTOR cudnnFinalize failed cudnn_status: CUDNN_STATUS_SUBLIBRARY_LOADING_FAILED�[m
�[1;31m2025-01-16 10:28:54.219935090 [E:onnxruntime:, sequential_executor.cc:516 ExecuteKernel] Non-zero status code returned while running Conv node. Name:'/features/features.0/Conv' Status Message: Failed to initialize CUDNN Frontend/home/t_mjan/onnxruntime/onnxruntime/core/providers/cuda/cudnn_fe_call.cc:99 std::conditional_t<THRW, void, onnxruntime::common::Status> onnxruntime::CudaCall(ERRTYPE, const char*, const char*, SUCCTYPE, const char*, const char*, int) [with ERRTYPE = cudnn_frontend::error_object; bool THRW = true; SUCCTYPE = cudnn_frontend::error_code_t; std::conditional_t<THRW, void, onnxruntime::common::Status> = void] /home/t_mjan/onnxruntime/onnxruntime/core/providers/cuda/cudnn_fe_call.cc:91 std::conditional_t<THRW, void, onnxruntime::common::Status> onnxruntime::CudaCall(ERRTYPE, const char*, const char*, SUCCTYPE, const char*, const char*, int) [with ERRTYPE = cudnn_frontend::error_object; bool THRW = true; SUCCTYPE = cudnn_frontend::error_code_t; std::conditional_t<THRW, void, onnxruntime::common::Status> = void] CUDNN_FE failure 11: CUDNN_BACKEND_API_FAILED ; GPU=0 ; hostname=sg-gpu-1 ; file=/home/t_mjan/onnxruntime/onnxruntime/core/providers/cuda/nn/conv.cc ; line=224 ; expr=s_.cudnn_fe_graph->build_operation_graph(handle); 

with the cudnn frontend json:
{"context":{"compute_data_type":"FLOAT","intermediate_data_type":"FLOAT","io_data_type":"FLOAT","name":"","sm_count":-1},"cudnn_backend_version":"9.6.0","cudnn_frontend_version":10700,"json_version":"1.0","nodes":[{"compute_data_type":"FLOAT","dilation":[1,1],"inputs":{"W":"w","X":"x"},"math_mode":"CROSS_CORRELATION","name":"","outputs":{"Y":"::Y"},"post_padding":[2,2],"pre_padding":[2,2],"stride":[4,4],"tag":"CONV_FPROP"}],"tensors":{"::Y":{"data_type":"FLOAT","dim":[1,64,55,55],"is_pass_by_value":false,"is_virtual":false,"name":"::Y","pass_by_value":null,"reordering_type":"NONE","stride":[193600,3025,55,1],"uid":0,"uid_assigned":false},"w":{"data_type":"FLOAT","dim":[64,3,11,11],"is_pass_by_value":false,"is_virtual":false,"name":"w","pass_by_value":null,"reordering_type":"NONE","stride":[363,121,11,1],"uid":1,"uid_assigned":true},"x":{"data_type":"FLOAT","dim":[1,3,224,224],"is_pass_by_value":false,"is_virtual":false,"name":"x","pass_by_value":null,"reordering_type":"NONE","stride":[150528,50176,224,1],"uid":0,"uid_assigned":false}}}�[m
openat(AT_FDCWD, "alexnet.onnx", O_RDONLY) = 44
+++ exited with 0 +++

@m0hammadjaan
Copy link
Author

@tianleiwu any updates on it?

@tianleiwu
Copy link
Contributor

@m0hammadjaan, Could you try build a binary with tlwu/conv_cudnn_fe_fallback branch. It will try fallback Conv to not use cudnn frontend. Let me know if it could resolve the issue.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
ep:CUDA issues related to the CUDA execution provider
Projects
None yet
Development

No branches or pull requests

3 participants