forked from e4s2024/E4S2024
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_UI_seg19.py
executable file
·580 lines (450 loc) · 26.1 KB
/
run_UI_seg19.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
from options.ui_options import UIOptions
import sys
from PyQt5.QtCore import *
from PyQt5.QtGui import *
from PyQt5.QtWidgets import *
from PyQt5.QtPrintSupport import QPrintDialog, QPrinter
from ui_run.ui import Ui_Form
from ui_run.mouse_event import GraphicsScene
import cv2
import skimage.io
from ui_run.util import number_color, color_pred,celebAHQ_masks_to_faceParser_mask_detailed, my_number_object, COMPS
import qdarkstyle
import qdarkgraystyle
import os
import numpy as np
import skimage.io
from PIL import Image
import os
import torch
from PyQt5 import QtGui
from models.networks import Net3
from glob import glob
import copy
from utils import torch_utils
from datasets.dataset import CelebAHQDataset, get_transforms, TO_TENSOR, NORMALIZE
import torchvision.transforms as transforms
class ExWindow(QMainWindow):
def __init__(self, opt):
super().__init__()
self.EX = Ex(opt)
self.setWindowIcon(QtGui.QIcon('ui_run/icons/edit_icon.svg'))
class Ex(QWidget, Ui_Form):
@pyqtSlot()
def change_brush_size(self): # 改变画刷的 粗细
self.scene.brush_size = self.brushSlider.value()
self.brushsizeLabel.setText('Brush size: %d' % self.scene.brush_size)
@pyqtSlot()
def change_alpha_value(self):
self.alpha = self.alphaSlider.value() / 20
self.alphaLabel.setText('Alpha: %.2f' % self.alpha)
@pyqtSlot()
def switch_labels(self, label): # 换了一种label颜色按钮
self.scene.label = label
self.scene.color = number_color[label]
self.color_Button.setStyleSheet("background-color: %s;" % self.scene.color)
@pyqtSlot()
def undo(self):
self.scene.undo()
def __init__(self, opt):
super().__init__()
self.init_deep_model(opt)
self.setupUi(self)
self.show()
# 下面都是一些默认值
self.modes = 0
self.alpha = 1 # 插值的alpha
self.ref_style_img_path = None
self.mouse_clicked = False
self.scene = GraphicsScene(self.modes, self) # 用来编辑的 scene
self.scene.setSceneRect(0, 0, 512, 512)
self.graphicsView.setScene(self.scene)
self.graphicsView.setAlignment(Qt.AlignCenter)
self.graphicsView.setVerticalScrollBarPolicy(Qt.ScrollBarAlwaysOff)
self.graphicsView.setHorizontalScrollBarPolicy(Qt.ScrollBarAlwaysOff)
self.result_scene = QGraphicsScene()
self.graphicsView_2.setScene(self.result_scene)
self.graphicsView_2.setAlignment(Qt.AlignCenter)
self.graphicsView_2.setVerticalScrollBarPolicy(Qt.ScrollBarAlwaysOff)
self.graphicsView_2.setHorizontalScrollBarPolicy(Qt.ScrollBarAlwaysOff)
self.GT_scene = QGraphicsScene()
self.graphicsView_GT.setScene(self.GT_scene)
self.graphicsView_GT.setAlignment(Qt.AlignCenter)
self.graphicsView_GT.setVerticalScrollBarPolicy(Qt.ScrollBarAlwaysOff)
self.graphicsView_GT.setHorizontalScrollBarPolicy(Qt.ScrollBarAlwaysOff)
self.dlg = QColorDialog(self.graphicsView)
self.init_screen() # 初始化screen
def init_screen(self):
#self.image = QPixmap(self.graphicsView.size())
self.image = QPixmap(QSize(512, 512)) # 这张是待编辑的mask可视化图片
self.image.fill(QColor('#FFFFFF'))
self.mat_img = np.zeros([512, 512, 3], np.uint8) # mask图片, [0-12], 3通道
self.mat_img_org = self.mat_img.copy()
self.GT_img_path = None
GT_img = np.ones([512, 512, 3], np.uint8)*255
self.GT_img = Image.fromarray(GT_img)
self.GT_img = self.GT_img.convert('RGB')
#################### add GT image
self.update_GT_image(GT_img)
#####################
self.scene.reset()
if len(self.scene.items()) > 0:
self.scene.reset_items()
self.scene.addPixmap(self.image)
############### load average features
# TODO: 把这两行注释打开
# self.load_average_feature()
# self.run_deep_model()
self.recorded_img_names = []
self.clean_snapshots()
self.clean_generated_result()
def init_deep_model(self, opt): # 初始化模型
self.opt = opt
assert self.opt.checkpoint_path is not None, "please specify the pre-trained weights!"
print("Loading model and weights, please wait a few seconds...")
self.net = Net3(self.opt).eval().to(self.opt.device)
ckpt_dict=torch.load(self.opt.checkpoint_path)
self.net.latent_avg = ckpt_dict['latent_avg'].to(self.opt.device) if self.opt.start_from_latent_avg else None
self.net.load_state_dict(torch_utils.remove_module_prefix(ckpt_dict["state_dict"],prefix="module."))
print("Loading Done!")
# 固定noise
channels = {
4: 512,
8: 512,
16: 512,
32: 512,
64: 256 * 2,
128: 128 * 2,
256: 64 * 2,
512: 32 * 2,
1024: 16 * 2,
}
self.noise = [torch.randn(1,512,4,4).to(self.opt.device)]
for i in [8,16,32,64,128,256,512,1024]:
self.noise.append(torch.randn(1,channels[i],i,i).to(self.opt.device))
self.noise.append(torch.randn(1,channels[i],i,i).to(self.opt.device))
# ===================================================
def editing(self): # 生成编辑的结果
mat_img_seg12 = celebAHQ_masks_to_faceParser_mask_detailed(self.mat_img[:,:,0])
mask_edit = (TO_TENSOR(mat_img_seg12)*255).long().to(self.opt.device).unsqueeze(0)
# mask_edit = (TO_TENSOR(self.mat_img[:,:,0])*255).long().to(self.opt.device).unsqueeze(0)
# [bs,1,H,W]的mask 转成one-hot格式,即[bs,#seg_cls,H,W]
onehot_edit = torch_utils.labelMap2OneHot(mask_edit, num_cls=self.opt.num_seg_cls)
with torch.no_grad():
style_codes = self.net.cal_style_codes(self.mixed_style_vectors)
generated, _, _ = self.net.gen_img(torch.zeros(1,512,32,32).to(onehot_edit.device),
style_codes, onehot_edit,
randomize_noise=False,noise=self.noise)
# 展示结果
self.show_generated_result(generated[0])
def mixing_ref_img_style(self):
# 点击右上角正在编辑的图片
if self.ref_style_img_path is None: # TODO: 改变自己的style vectors
return
else:
# 首先更新一下编辑后mask对应的label count
self.label_count = []
for i in range(self.opt.num_seg_cls):
if np.sum(self.mat_img[:,:,0]==i) != 0:
self.label_count.append(i) # 存在的component
self.ref_mat_img_path = os.path.join(self.opt.label_dir, os.path.basename(self.ref_style_img_path)[:-4]+".png")
# USE CV2 read images, because of using gray scale images, no matter the RGB orders
ref_mat_img = cv2.imread(self.ref_mat_img_path)
# 转成12个label的格式
ref_mat_img = celebAHQ_masks_to_faceParser_mask_detailed(ref_mat_img[:,:,0])
ref_img_path = os.path.join(self.opt.image_dir, os.path.basename(self.ref_style_img_path)[:-4] + '.jpg')
ref_img = Image.open(ref_img_path).convert('RGB')
# ************************跑模型*****************************
# 先包装成batch,并放到cuda上去
img = transforms.Compose([TO_TENSOR, NORMALIZE])(ref_img).to(self.opt.device).float().unsqueeze(0)
mask = (TO_TENSOR(ref_mat_img)*255).long().to(self.opt.device).unsqueeze(0)
# [bs,1,H,W]的mask 转成one-hot格式,即[bs,#seg_cls,H,W]
onehot = torch_utils.labelMap2OneHot(mask, num_cls=self.opt.num_seg_cls)
# reference image 的style codes
with torch.no_grad():
ref_style_vectors, ref_struc_code = self.net.get_style_vectors(img, onehot)
# ref_style_codes = self.net.cal_style_codes(ref_style_vectors)
# ************************************************************
assert self.style_vectors is not None, "No source image was provided!"
for i, cb_status in enumerate(self.checkbox_status):
if cb_status and i in self.label_count: # 复选框选中,并且自身也存在对应的label
self.mixed_style_vectors[0,i,:] = (1-self.alpha) * self.style_vectors[0,i,:] + self.alpha * ref_style_vectors[0,i,:]
self.style_img_mask_dic[my_number_object[i]] = self.ref_style_img_path # 每个component的style由哪张图片提供
# else:
# self.style_img_mask_dic[my_number_object[i]] = self.GT_img_path
# forward 模型得到结果
mixed_style_codes = self.net.cal_style_codes(self.mixed_style_vectors)
# [bs,1,H,W]的mask 转成one-hot格式,即[bs,#seg_cls,H,W]
onehot = torch_utils.labelMap2OneHot(
(TO_TENSOR(self.mat_img[:,:,0])*255).long().to(self.opt.device).unsqueeze(0),
num_cls=self.opt.num_seg_cls
)
with torch.no_grad():
generated, _, _ = self.net.gen_img(torch.zeros(1,512,32,32).to(onehot.device), mixed_style_codes, onehot,
randomize_noise=False,noise=self.noise)
# 展示结果
self.show_generated_result(generated[0])
self.update_snapshots()
def load_partial_average_feature(self): # 这个函数还没实现
# TODO: calculate average style vectors
mean_style_vectors = 'XXX'
mixed_style_vectors = copy.deepcopy(self.style_vectors)
for i, cb_status in enumerate(self.checkbox_status):
if cb_status:
mixed_style_vectors[0,i,:] = mean_style_vectors[0,i,:]
if my_number_object[i] in self.style_img_mask_dic:
del self.style_img_mask_dic[my_number_object[i]]
# forward 模型得到结果
mixed_style_codes = self.net.cal_style_codes(mixed_style_vectors)
onehot = torch_utils.labelMap2OneHot(self.mat_img, num_cls=self.opt.num_seg_cls)
generated = self.net.gen_img(torch.zeros(1,512,32,32).to(onehot.device), mixed_style_codes, onehot,
randomize_noise=False,noise=self.noise)
# 展示结果
self.show_generated_result(generated)
self.update_snapshots()
def show_generated_result(self,generated):
"""假定输入的是网络生成的tensor格式数据"""
generated_img = np.array(torch_utils.tensor2im(generated)) # np array
qim = QImage(generated_img.data, generated_img.shape[1], generated_img.shape[0], QImage.Format_RGB888)
if len(self.result_scene.items()) > 0:
self.result_scene.removeItem(self.result_scene.items()[-1])
self.result_scene.addPixmap(QPixmap.fromImage(qim).scaled(QSize(512,512),transformMode=Qt.SmoothTransformation))
self.generated_img = generated_img
# def show_reference_image(self, im_name):
# qim = QImage(im_name).scaled(QSize(256, 256),transformMode=Qt.SmoothTransformation)
# # self.referDialogImage.setPixmap(QPixmap.fromImage(qim).scaled(QSize(512, 512), transformMode=Qt.SmoothTransformation))
# # # self.referDialog.setWindowTitle('Input:' + os.path.basename(self.GT_img_path) + '\t \t Reference:' + os.path.basename(im_name))
# # self.referDialog.show()
# self.GT_scene.addPixmap(QPixmap.fromImage(qim).scaled(QSize(512, 512), transformMode=Qt.SmoothTransformation))
def compNames2Indices(self,comp_names=[]):
return [COMPS.index(name) for name in comp_names]
def update_snapshots(self):
self.clean_snapshots()
self.recorded_img_names = list(set(self.style_img_mask_dic.values())) # 由哪些图片的style 共同组成
self.recorded_mask_dic = {}
tmp_count = 0
for i, name in enumerate(self.recorded_img_names):
self.recorded_mask_dic[name] = [comp_name for comp_name in self.style_img_mask_dic if self.style_img_mask_dic[comp_name]==name]
gray_mask = skimage.io.imread(os.path.join(self.opt.label_dir, os.path.basename(name)[:-4] + '.png'))
# 转成12个label种类的格式
gray_mask_12seg = celebAHQ_masks_to_faceParser_mask_detailed(gray_mask)
rgb_mask = color_pred(gray_mask_12seg)
mask_snap = np.where(np.isin(np.repeat(np.expand_dims(gray_mask_12seg,2),3, axis=2),
self.compNames2Indices(self.recorded_mask_dic[name])),
rgb_mask, 255)
if not (mask_snap==255).all(): # 不全是255,即存在某个类别的mask
self.mask_snap_style_button_list[tmp_count].setIcon(QIcon(
QPixmap.fromImage(QImage(mask_snap.data, mask_snap.shape[1], mask_snap.shape[0], mask_snap.strides[0], QImage.Format_RGB888)))
)
self.snap_style_button_list[tmp_count].setIcon(QIcon(name)) # 展示这张图片来源的mask
tmp_count += 1
def update_GT_image(self, GT_img):
qim = QImage(GT_img.data, GT_img.shape[1], GT_img.shape[0], GT_img.strides[0],
QImage.Format_RGB888)
qim = qim.scaled(QSize(256, 256), Qt.IgnoreAspectRatio, transformMode=Qt.SmoothTransformation)
if len(self.GT_scene.items()) > 0:
self.GT_scene.removeItem(self.GT_scene.items()[-1])
self.GT_scene.addPixmap(QPixmap.fromImage(qim).scaled(QSize(512, 512),transformMode=Qt.SmoothTransformation))
def clean_generated_result(self):
"""清空生成的结果"""
dummy_img = np.ones([512, 512, 3], np.uint8)*255 # np array
qim = QImage(dummy_img.data, dummy_img.shape[1], dummy_img.shape[0], QImage.Format_RGB888)
if len(self.result_scene.items()) > 0:
self.result_scene.removeItem(self.result_scene.items()[-1])
self.result_scene.addPixmap(QPixmap.fromImage(qim).scaled(QSize(512,512),transformMode=Qt.SmoothTransformation))
def clean_snapshots(self):
for snap_style_button in self.snap_style_button_list:
snap_style_button.setIcon(QIcon())
for mask_snap_style_button in self.mask_snap_style_button_list:
mask_snap_style_button.setIcon(QIcon())
def open_snapshot_dialog(self, i):
if i < len(self.recorded_img_names):
im_name = self.recorded_img_names[i]
qim = QImage(im_name).scaled(QSize(256, 256), transformMode=Qt.SmoothTransformation)
self.snapshotDialogImage.setPixmap(
QPixmap.fromImage(qim).scaled(QSize(512, 512), transformMode=Qt.SmoothTransformation))
self.snapshotDialog.setWindowTitle('Reference:' + os.path.basename(im_name))
self.snapshotDialog.show()
self.snapshotDialog.count = i
else:
self.snapshotDialog.setWindowTitle('Reference:')
self.snapshotDialogImage.setPixmap(QPixmap())
self.snapshotDialog.show()
self.snapshotDialog.count = i
def set_ref_img_path(self,style_img_path):
self.ref_style_img_path = style_img_path
self.ref_img_button.setIcon(QIcon(self.ref_style_img_path)) # 右下角图片
self.opsLogTextBox.appendPlainText("Reference Image: %s"%self.ref_style_img_path)
@pyqtSlot()
def open(self): # 打开文件逻辑
fileName, _ = QFileDialog.getOpenFileName(self, "Open File",
QDir.currentPath() +
'/ui_run/edit_comp/CelebA-HQ/test/vis')
# '/imgs/colormaps')
if fileName:
self.clean_snapshots()
self.clean_generated_result()
self.mat_img_path = os.path.join(self.opt.label_dir, os.path.basename(fileName))
# USE CV2 read images, because of using gray scale images, no matter the RGB orders
mat_img = cv2.imread(self.mat_img_path)
# 转成12个label的格式
# mat_img = celebAHQ_masks_to_faceParser_mask_detailed(mat_img[:,:,0])
# 直接使用19个类
mat_img = mat_img[:,:,0]
# mask 的可视化图片
mat_img_vis = color_pred(mat_img)
# image = QPixmap(fileName)
image = QImage(mat_img_vis.data, mat_img_vis.shape[1], mat_img_vis.shape[0], mat_img_vis.strides[0],QImage.Format_RGB888)
image = QPixmap(image)
# image = Image.fromarray(mat_img_vis).toqpixmap()
# self.image = image.scaled(self.graphicsView.size(), Qt.IgnoreAspectRatio)
self.image = image.scaled(QSize(512, 512), Qt.IgnoreAspectRatio)
self.mat_img = cv2.resize(mat_img, (512, 512), interpolation=cv2.INTER_NEAREST) # 这张是label map(0-11)
# 再将12个类别的mask转成3通道
self.mat_img = np.stack((self.mat_img,)*3, axis=-1)
self.mat_img_org = self.mat_img.copy() # 原始的 label map
self.GT_img_path = os.path.join(self.opt.image_dir, os.path.basename(fileName)[:-4] + '.jpg')
GT_img = skimage.io.imread(self.GT_img_path)
self.GT_img = Image.fromarray(GT_img)
self.GT_img = self.GT_img.convert('RGB')
self.input_img_button.setIcon(QIcon(self.GT_img_path)) # 右上角图片
#################### add GT image
self.update_GT_image(GT_img)
#####################
self.scene.reset()
if len(self.scene.items()) > 0: # 先清空3张图片
self.scene.reset_items()
self.scene.addPixmap(self.image)
def recon(self):
# ************************跑模型*****************************
# 先包装成batch,并放到cuda上去
img = transforms.Compose([TO_TENSOR, NORMALIZE])(self.GT_img).to(self.opt.device).float().unsqueeze(0)
mat_img_seg12 = celebAHQ_masks_to_faceParser_mask_detailed(self.mat_img[:,:,0])
mask = (TO_TENSOR(mat_img_seg12)*255).long().to(self.opt.device).unsqueeze(0)
# [bs,1,H,W]的mask 转成one-hot格式,即[bs,#seg_cls,H,W]
onehot = torch_utils.labelMap2OneHot(mask, num_cls=self.opt.num_seg_cls)
# source image 的style codes
with torch.no_grad():
self.style_vectors, struc_code = self.net.get_style_vectors(img, onehot)
self.style_codes = self.net.cal_style_codes(self.style_vectors)
generated, _, _ = self.net.gen_img(torch.zeros(1,512,32,32).to(onehot.device),
self.style_codes, onehot,
randomize_noise=False,noise=self.noise)
# 展示结果
self.show_generated_result(generated[0])
# 为了后续的增量式编辑需要
self.mixed_style_vectors = copy.deepcopy(self.style_vectors)
# print("Load input image %s done !"% os.path.basename(fileName)[:-4])
# print(self.style_vectors.size(), self.style_codes.size())
# *****************************************************
self.style_img_mask_dic = {}
self.label_count = []
for i in range(self.opt.num_seg_cls):
if np.sum(self.mat_img[:,:,0]==i) != 0:
self.style_img_mask_dic[my_number_object[i]] = self.GT_img_path # 每个component的style由哪张图片提供
self.label_count.append(i) # 存在的component
# 更新一下底部的 snapshot
# self.update_snapshots()
@pyqtSlot()
def open2(self): # 打开文件逻辑,只是为了编辑mask而设计的逻辑
fileName, _ = QFileDialog.getOpenFileName(self, "Open File",
QDir.currentPath() +
# '/ui_run/mini_testset/CelebA-HQ/test/vis')
'/our_swapping_dataset/faceVid2Vid_GPEN_driven2')
if fileName:
self.clean_snapshots()
self.black_generated_result()
self.mat_img_path = fileName
# USE CV2 read images, because of using gray scale images, no matter the RGB orders
mat_img = cv2.imread(self.mat_img_path)[:,:,0]
# # 转成12个label的格式
# mat_img = celebAHQ_masks_to_faceParser_mask_detailed(mat_img[:,:,0])
# mask 的可视化图片
mat_img_vis = color_pred(mat_img)
# image = QPixmap(fileName)
image = QImage(mat_img_vis.data, mat_img_vis.shape[1], mat_img_vis.shape[0], mat_img_vis.strides[0],QImage.Format_RGB888)
image = QPixmap(image)
# image = Image.fromarray(mat_img_vis).toqpixmap()
# self.image = image.scaled(self.graphicsView.size(), Qt.IgnoreAspectRatio)
self.image = image.scaled(QSize(512, 512), Qt.IgnoreAspectRatio)
self.mat_img = cv2.resize(mat_img, (512, 512), interpolation=cv2.INTER_NEAREST) # 这张是label map(0-11)
# 再将12个类别的mask转成3通道
self.mat_img = np.stack((self.mat_img,)*3, axis=-1)
self.mat_img_org = self.mat_img.copy() # 原始的 label map
# self.GT_img_path = os.path.join(self.opt.image_dir, os.path.basename(fileName)[:-4] + '.jpg')
# GT_img = skimage.io.imread(self.GT_img_path)
# self.GT_img = Image.fromarray(GT_img)
# self.GT_img = self.GT_img.convert('RGB')
# self.input_img_button.setIcon(QIcon(self.GT_img_path)) # 右上角图片
#################### add GT image
# self.update_GT_image(GT_img)
#####################
self.scene.reset()
if len(self.scene.items()) > 0: # 先清空3张图片
self.scene.reset_items()
self.scene.addPixmap(self.image)
# # ************************跑模型*****************************
# # 先包装成batch,并放到cuda上去
# img = transforms.Compose([TO_TENSOR, NORMALIZE])(self.GT_img).to(self.opt.device).float().unsqueeze(0)
# mask = (TO_TENSOR(self.mat_img[:,:,0])*255).long().to(self.opt.device).unsqueeze(0)
# # [bs,1,H,W]的mask 转成one-hot格式,即[bs,#seg_cls,H,W]
# onehot = torch_utils.labelMap2OneHot(mask, num_cls=self.opt.num_seg_cls)
# # source image 的style codes
# with torch.no_grad():
# self.style_vectors, struc_code = self.net.get_style_vectors(img, onehot)
# self.style_codes = self.net.cal_style_codes(self.style_vectors)
# # 为了后续的增量式编辑需要
# self.mixed_style_vectors = copy.deepcopy(self.style_vectors)
# # print("Load input image %s done !"% os.path.basename(fileName)[:-4])
# print(self.style_vectors.size(), self.style_codes.size())
# # *****************************************************
self.style_img_mask_dic = {}
self.label_count = []
for i in range(self.opt.num_seg_cls):
if np.sum(self.mat_img[:,:,0]==i) != 0:
self.style_img_mask_dic[my_number_object[i]] = self.GT_img_path # 每个component的style由哪张图片提供
self.label_count.append(i) # 存在的component
# 更新一下底部的 snapshot
# self.update_snapshots()
@pyqtSlot()
def mode_select(self, mode): # 选择不同的模式
self.modes = mode
self.scene.modes = mode
if mode == 0: # 画笔模式
self.brushButton.setStyleSheet("background-color: #85adad")
self.recButton.setStyleSheet("background-color:")
self.fillButton.setStyleSheet("background-color:")
QApplication.setOverrideCursor(Qt.ArrowCursor)
elif mode == 1: # 矩形模式模式
self.recButton.setStyleSheet("background-color: #85adad")
self.brushButton.setStyleSheet("background-color:")
self.fillButton.setStyleSheet("background-color:")
QApplication.setOverrideCursor(Qt.ArrowCursor)
elif mode == 2: # 画刷模式
self.fillButton.setStyleSheet("background-color: #85adad")
self.brushButton.setStyleSheet("background-color:")
self.recButton.setStyleSheet("background-color:")
QApplication.setOverrideCursor(Qt.PointingHandCursor)
@pyqtSlot()
def save_img(self): # 保存编辑后的图片
ui_result_folder = 'edit_methods_comp_mask'
os.makedirs(ui_result_folder,exist_ok=True)
# skimage.io.imsave(os.path.join(ui_result_folder, str(current_time) +'_G_img.png'), self.generated_img)
# skimage.io.imsave(os.path.join(ui_result_folder, str(current_time) +'_mask.png'), self.mat_img[:, :, 0])
# skimage.io.imsave(os.path.join(ui_result_folder, str(current_time) +'_ColorMask.png'), color_pred(self.mat_img[:, :, 0]))
skimage.io.imsave(os.path.join(ui_result_folder, os.path.basename(self.mat_img_path)[:-4] +'_G_img.png'), self.generated_img)
skimage.io.imsave(os.path.join(ui_result_folder, os.path.basename(self.mat_img_path)[:-4] + '_mask.png'), self.mat_img[:, :, 0])
skimage.io.imsave(os.path.join(ui_result_folder, os.path.basename(self.mat_img_path)[:-4] + '_ColorMask.png'),color_pred(self.mat_img[:, :, 0]))
def load_average_feature(self):
# TODO
pass
# ===================================================
if __name__ == '__main__':
opt = UIOptions().parse()
opt.status = 'UI_mode'
app = QApplication(sys.argv)
#app.setStyleSheet(qdarkgraystyle.load_stylesheet())
# app.setStyleSheet(qdarkstyle.load_stylesheet_PyQt5())
ex = ExWindow(opt)
# ex = Ex(opt)
sys.exit(app.exec_())