-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathhog_cut_new.py
139 lines (95 loc) · 4.15 KB
/
hog_cut_new.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import cv2
import os
import numpy as np
from sklearn import svm
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from skimage.feature import local_binary_pattern
import cv2
# Define the directory where the hand gesture images are stored
# dataset_dir = "dataset\Woman"
dataset_dir = "dataset_sample\Women"
labels = []
features=[]
# Define the HOG parameters
win_size = (64, 64)
block_size = (16, 16)
block_stride = (8, 8)
cell_size = (8, 8)
nbins = 9
# range
lower_skin = np.array([0, 135, 85])
upper_skin = np.array([255, 180, 135])
for sub_dir in os.listdir(dataset_dir):
sub_dir_path = os.path.join(dataset_dir, sub_dir)
if not os.path.isdir(sub_dir_path):
continue
# Iterate through each image file in the subdirectory
for file_name in os.listdir(sub_dir_path):
if not file_name.endswith(".JPG"):
continue
image_path = os.path.join(sub_dir_path, file_name)
image = cv2.imread(image_path)
# Convert the image to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Convert the image to the YCrCb color space
ycrcb = cv2.cvtColor(image, cv2.COLOR_BGR2YCrCb)
# Apply a skin color range filter to the YCrCb image
lower_skin = np.array([0, 135, 85])
upper_skin = np.array([255, 180, 135])
mask = cv2.inRange(ycrcb, lower_skin, upper_skin)
# Replace white pixels in gray_image with corresponding pixel values in binary_mask
result_image = cv2.bitwise_and(gray, mask)
# Find contours in the result image
contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Find the largest contour
max_contour = max(contours, key=cv2.contourArea)
# Crop the image to the bounding box of the contour
x, y, w, h = cv2.boundingRect(max_contour)
result_image = result_image[y:y+h, x:x+w]
result_image= cv2.resize(result_image,(128,128))
#Initialize HOG descriptor
hog = cv2.HOGDescriptor(win_size, block_size, block_stride, cell_size, nbins)
#Compute HOG features
hog_features = hog.compute(result_image)
features.append(hog_features)
print(sub_dir)
labels.append(sub_dir)
features = np.array(features)
labels = np.array(labels)
print(labels.shape)
print(features.shape)
# Split the dataset into training and testing sets
train_features, test_features, train_labels, test_labels = train_test_split(
features, labels, test_size=0.25, random_state=42)
print('Shape of train_images:', train_features.shape)
print('Shape of train_labels:', train_labels.shape)
print('Shape of test_images:', test_features.shape)
print('Shape of test_labels:', test_labels.shape)
# # Create an AdaBoost classifier with decision tree base estimator
# clf = AdaBoostClassifier(n_estimators=300, random_state=42)
# # Fit the classifier to the training data
# clf.fit(train_features, train_labels)
# predicted_labels = clf.predict(test_features)
# # Compute the accuracy of the SVM classifier
# accuracy = accuracy_score(test_labels, predicted_labels)
# print("Accuracy: {:.4f}%".format(accuracy * 100))
#############################################################################
# Train a Support Vector Machine (SVM) classifier
svm_classifier = svm.SVC(kernel="linear")
svm_classifier.fit(train_features, train_labels)
# Predict the labels of the test set using the trained SVM classifier
predicted_labels = svm_classifier.predict(test_features)
# Compute the accuracy of the SVM classifier
accuracy = accuracy_score(test_labels, predicted_labels)
print("Accuracy: {:.4f}%".format(accuracy * 100))
#############################################################################
# # Create a KNN classifier with k=3
# knn = KNeighborsClassifier(n_neighbors=3)
# # Fit the model using the training data
# knn.fit(train_features, train_labels)
# # Make predictions on the testing data
# predicted_labels = knn.predict(test_features)
# # Compute the accuracy of the knn classifier
# accuracy = accuracy_score(test_labels, predicted_labels)
# print("Accuracy: {:.4f}%".format(accuracy * 100))