-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathshi-tomasi.py
78 lines (57 loc) · 2.29 KB
/
shi-tomasi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import cv2
import os
import numpy as np
from sklearn import svm
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.datasets import load_iris
import joblib
import cv2
# Define the directory where the hand gesture images are stored
# dataset_dir = "dataset\Woman"
dataset_dir = "dataset_sample\Women"
labels = []
features=[]
lower_skin = np.array([0, 135, 85])
upper_skin = np.array([255, 180, 135])
max_corners = 500
quality_level = 0.01
min_distance = 10
for sub_dir in os.listdir(dataset_dir):
sub_dir_path = os.path.join(dataset_dir, sub_dir)
if not os.path.isdir(sub_dir_path):
continue
# Iterate through each image file in the subdirectory
for file_name in os.listdir(sub_dir_path):
if not file_name.endswith(".JPG"):
continue
image_path = os.path.join(sub_dir_path, file_name)
image = cv2.imread(image_path)
# gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
ycrcb = cv2.cvtColor(image, cv2.COLOR_BGR2YCrCb)
mask = cv2.inRange(ycrcb, lower_skin, upper_skin)
corners = cv2.goodFeaturesToTrack(mask, max_corners, quality_level, min_distance)
print(len(corners.flatten()))
features.append(corners.flatten())
print(sub_dir)
labels.append(sub_dir)
features = np.array(features)
labels = np.array(labels)
print(labels.shape)
# Split the dataset into training and testing sets
train_features, test_features, train_labels, test_labels = train_test_split(
features, labels, test_size=0.25, random_state=42)
print('Shape of train_images:', train_features.shape)
print('Shape of train_labels:', train_labels.shape)
print('Shape of test_images:', test_features.shape)
print('Shape of test_labels:', test_labels.shape)
# Train a Support Vector Machine (SVM) classifier
svm_classifier = svm.SVC(kernel="linear")
svm_classifier.fit(train_features, train_labels)
# # Save the trained classifier to a file
# joblib.dump(svm_classifier, 'svm_classifier.joblib')
# Predict the labels of the test set using the trained SVM classifier
predicted_labels = svm_classifier.predict(test_features)
# Compute the accuracy of the SVM classifier
accuracy = accuracy_score(test_labels, predicted_labels)
print("Accuracy: {:.4f}%".format(accuracy * 100))