-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprzona.py
246 lines (212 loc) · 9.15 KB
/
przona.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
from bs4 import BeautifulSoup
from colorama import Fore, Back, Style
import csv
import pandas as pd
import re
import requests
import time
from IPython.display import clear_output
def squeal(text=None):
clear_output(wait=True)
if not text is None: print(text)
def get_web_page(url, debug=True):
time.sleep(1)
web_page = requests.get(url)
if web_page.status_code == 200:
if debug:
print(f"retrieved web page {url} (200/{len(web_page.content)})")
else:
print(Fore.RED, f"web page {url} returned status code {web_page.status_code}", Style.RESET_ALL)
return(web_page.content)
def get_page_links(web_page, patterns=[]):
page_links = []
for a in BeautifulSoup(web_page, "html.parser").select('a'):
try:
href = a.get("href")
for pattern in patterns:
if re.search(pattern, href):
page_links.append(href)
except TypeError:
pass
return(page_links)
def split_url(url):
if re.search("^https?://", url, flags=re.IGNORECASE):
return("/".join(url.split("/")[:3]), "/"+"/".join(url.split("/")[3:]))
else:
return("", url)
def get_web_pages(url, patterns=[], processed_urls=[], debug=True):
web_page_contents = get_web_page(url, debug)
target_urls = get_page_links(web_page_contents, patterns)
base_url, remote_file = split_url(url)
web_pages = {remote_file: web_page_contents}
retrieved_urls = [remote_file]
while len(set(target_urls)) > len(web_pages):
target_url = list(set(target_urls).difference(set(web_pages.keys())))[0]
if target_url in processed_urls:
web_pages[target_url] = "PROCESSED"
if debug:
print(f"already processed {target_url}")
elif not re.search("\.html*$",target_url) and not re.search("/[^.]*$",target_url):
web_pages[target_url] = "SKIPPED"
if debug:
print(f"skipped {target_url}")
elif re.search("/gerelateerde_documenten/", target_url) and \
"/".join(target_url.split("/")[6:]) in retrieved_urls:
web_pages[target_url] = "DUPLICATE"
if debug:
print(f"duplicate {target_url}")
else:
web_pages[target_url] = get_web_page(base_url+target_url, debug)
target_urls.extend(get_page_links(web_pages[target_url], patterns))
if re.search("/gerelateerde_documenten/", target_url):
retrieved_urls.append("/".join(target_url.split("/")[6:]))
return(web_pages)
def get_recommendation_list(web_pages):
recommendation_list = []
for key in web_pages:
for a in BeautifulSoup(web_pages[key], "html.parser").select('a'):
try:
href = a.get("href")
if re.search("^/richtlijn/", href):
recommendation = href.split("/")[2]
if recommendation not in recommendation_list:
recommendation_list.append(recommendation)
except TypeError:
pass
return(recommendation_list)
def save_dict(dictionary, out_file_name, mode="w"):
out_file = open(out_file_name, mode)
csvwriter = csv.writer(out_file)
for key in dictionary:
if type(dictionary[key]) == dict:
row = [key]
row.extend(list(dictionary[key].values()))
csvwriter.writerow(row)
elif type(dictionary[key]) == list:
row = [key]
row.extend(dictionary[key])
csvwriter.writerow(row)
else:
row = [key, dictionary[key]]
csvwriter.writerow(row)
out_file.close()
def read_dict(file_name, spy=False):
counter = 0
dict_out = {}
infile = open(file_name,"r")
csvreader = csv.reader(infile)
for row in csvreader:
counter += 1
if len(row) == 0:
print(Fore.RED,"cannot happen")
else:
index = row.pop(0)
if len(row) == 0:
dict_out[index] = []
elif type(row) == str:
dict_out[index] = [row]
else:
dict_out[index] = row
if counter % 1000 == 0:
if spy:
squeal(counter)
if spy:
squeal(counter)
infile.close()
return(dict_out)
def get_duplicate_web_pages(web_pages, out_file_name):
counter = 0
for url in web_pages:
counter += 1
if type(web_pages[url]) == str and (web_pages[url] == "DUPLICATE" or web_pages[url] == "PROCESSED"):
squeal(counter)
content = get_web_page(BASE_URL+url)
save_dict({url: content}, out_file_name, mode="a")
def update_recommendations(recommendation_list, processed_urls, out_file_name, BASE_URL=""):
counter = 0
for recommendation in recommendation_list:
counter += 1
print(counter, recommendation)
if "/richtlijn/"+recommendation not in processed_urls:
recommendation_web_pages = get_web_pages(BASE_URL+"/richtlijn/"+recommendation,
patterns=["^/richtlijn/", "^/gerelateerde_documenten"],
processed_urls = processed_urls,
debug=False)
save_dict(recommendation_web_pages, out_file_name, mode="a")
processed_urls += list(recommendation_web_pages.keys())
def get_categories(content):
soup = BeautifulSoup(content)
categories = {}
for option in soup.select("option"):
key = option.get("value")
value = option.text
categories[key] = value
del(categories[""])
return(categories)
def get_recommendations_per_category(categories):
recommendations_per_category = {}
for key in categories:
query = BASE_QUERY+str(key)
web_pages = get_web_pages(BASE_URL+query,
patterns=["^/\?query=\&page=\d+"],
processed_urls=[BASE_URL+query])
print(f"category {key}; number of pages: {len(web_pages)}")
recommendation_list = get_recommendation_list(web_pages)
print(f"found {len(recommendation_list)} recommendations for category {key} {categories[key]}\n")
recommendations_per_category[key] = recommendation_list
return(recommendations_per_category)
def get_categories_per_recommendation(recommendations_per_category):
categories_per_recommendation = {}
for category in recommendations_per_category:
for recommendation in recommendations_per_category[category]:
if recommendation not in categories_per_recommendation:
categories_per_recommendation[recommendation] = {}
for c in recommendations_per_category:
categories_per_recommendation[recommendation][c] = " "
categories_per_recommendation[recommendation][category] = "+"
categories_per_recommendation = {r:categories_per_recommendation[r] for r in sorted(categories_per_recommendation.keys(),\
key=lambda r:len([c for c in categories_per_recommendation[r] if categories_per_recommendation[r][c] == "+"]),reverse=True)}
return(categories_per_recommendation)
def pretty_print(recommendations_per_category, outfile_name):
categories_per_recommendation = get_categories_per_recommendation(recommendations_per_category)
r_per_c = {c:{r:categories_per_recommendation[r][c] for r in categories_per_recommendation} for c in categories_per_recommendation[list(categories_per_recommendation.keys())[0]]}
r_per_c = {c:r_per_c[c] for c in sorted(r_per_c.keys(), key=lambda c:len([r for r in r_per_c[c] if r_per_c[c][r] == "+"]), reverse=True)}
pd.DataFrame(r_per_c).to_csv(outfile_name, index_label="richtlijn")
return(pd.DataFrame(r_per_c))
def get_recommendations(web_pages):
recommendations = []
for url in web_pages:
if re.search("^/richtlijn/", url):
recommendation = url.split("/")[2]
if not recommendation in recommendations and not re.search("[.?]", recommendation) and \
not re.search("Oeps", str(web_pages[url])) and recommendation != "item":
recommendations.append(recommendation)
return(recommendations)
def count_suffixes(web_pages):
suffixes = {}
for key in web_pages.keys():
suffix = key.split("/")[-1]
if re.search("\.", suffix):
suffix = suffix.split(".")[-1]
else:
suffix = ""
if re.search("\?", suffix):
suffix = suffix.split("?")[0]
if not suffix in suffixes:
suffixes[suffix] = 1
else:
suffixes[suffix] += 1
return(suffixes)
def get_links(web_pages, recommendation, url_part):
hrefs = []
for url in web_pages.keys():
if re.search(recommendation, url):
soup = BeautifulSoup(web_pages[url][0])
for tag in soup.select("a"):
try:
href = tag.get("href")
if re.search(url_part, href) and href not in hrefs:
hrefs.append(href)
except:
pass
return(hrefs)