-
Notifications
You must be signed in to change notification settings - Fork 66
/
Copy pathseld.py
226 lines (197 loc) · 9.67 KB
/
seld.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
#
# A wrapper script that trains the SELDnet. The training stops when the SELD error (check paper) stops improving.
#
import os
import sys
import numpy as np
import matplotlib.pyplot as plot
import cls_data_generator
import evaluation_metrics
import keras_model
import parameter
import utils
import time
from IPython import embed
plot.switch_backend('agg')
def collect_test_labels(_data_gen_test, _data_out, classification_mode, quick_test):
# Collecting ground truth for test data
nb_batch = 2 if quick_test else _data_gen_test.get_total_batches_in_data()
batch_size = _data_out[0][0]
gt_sed = np.zeros((nb_batch * batch_size, _data_out[0][1], _data_out[0][2]))
gt_doa = np.zeros((nb_batch * batch_size, _data_out[0][1], _data_out[1][2]))
print("nb_batch in test: {}".format(nb_batch))
cnt = 0
for tmp_feat, tmp_label in _data_gen_test.generate():
gt_sed[cnt * batch_size:(cnt + 1) * batch_size, :, :] = tmp_label[0]
gt_doa[cnt * batch_size:(cnt + 1) * batch_size, :, :] = tmp_label[1]
cnt = cnt + 1
if cnt == nb_batch:
break
return gt_sed.astype(int), gt_doa
def plot_functions(fig_name, _tr_loss, _val_loss, _sed_loss, _doa_loss, _epoch_metric_loss):
plot.figure()
nb_epoch = len(_tr_loss)
plot.subplot(311)
plot.plot(range(nb_epoch), _tr_loss, label='train loss')
plot.plot(range(nb_epoch), _val_loss, label='val loss')
plot.legend()
plot.grid(True)
plot.subplot(312)
plot.plot(range(nb_epoch), _epoch_metric_loss, label='metric')
plot.plot(range(nb_epoch), _sed_loss[:, 0], label='er')
plot.plot(range(nb_epoch), _sed_loss[:, 1], label='f1')
plot.legend()
plot.grid(True)
plot.subplot(313)
plot.plot(range(nb_epoch), _doa_loss[:, 1], label='gt_thres')
plot.plot(range(nb_epoch), _doa_loss[:, 2], label='pred_thres')
plot.legend()
plot.grid(True)
plot.savefig(fig_name)
plot.close()
def main(argv):
"""
Main wrapper for training sound event localization and detection network.
:param argv: expects two optional inputs.
first input: job_id - (optional) all the output files will be uniquely represented with this. (default) 1
second input: task_id - (optional) To chose the system configuration in parameters.py.
(default) uses default parameters
"""
if len(argv) != 3:
print('\n\n')
print('-------------------------------------------------------------------------------------------------------')
print('The code expected two inputs')
print('\t>> python seld.py <job-id> <task-id>')
print('\t\t<job-id> is a unique identifier which is used for output filenames (models, training plots). '
'You can use any number or string for this.')
print('\t\t<task-id> is used to choose the user-defined parameter set from parameter.py')
print('Using default inputs for now')
print('-------------------------------------------------------------------------------------------------------')
print('\n\n')
# use parameter set defined by user
task_id = '1' if len(argv) < 3 else argv[-1]
params = parameter.get_params(task_id)
job_id = 1 if len(argv) < 2 else argv[1]
model_dir = 'models/'
utils.create_folder(model_dir)
unique_name = '{}_ov{}_split{}_{}{}_3d{}_{}'.format(
params['dataset'], params['overlap'], params['split'], params['mode'], params['weakness'],
int(params['cnn_3d']), job_id
)
unique_name = os.path.join(model_dir, unique_name)
print("unique_name: {}\n".format(unique_name))
data_gen_train = cls_data_generator.DataGenerator(
dataset=params['dataset'], ov=params['overlap'], split=params['split'], db=params['db'], nfft=params['nfft'],
batch_size=params['batch_size'], seq_len=params['sequence_length'], classifier_mode=params['mode'],
weakness=params['weakness'], datagen_mode='train', cnn3d=params['cnn_3d'], xyz_def_zero=params['xyz_def_zero'],
azi_only=params['azi_only']
)
data_gen_test = cls_data_generator.DataGenerator(
dataset=params['dataset'], ov=params['overlap'], split=params['split'], db=params['db'], nfft=params['nfft'],
batch_size=params['batch_size'], seq_len=params['sequence_length'], classifier_mode=params['mode'],
weakness=params['weakness'], datagen_mode='test', cnn3d=params['cnn_3d'], xyz_def_zero=params['xyz_def_zero'],
azi_only=params['azi_only'], shuffle=False
)
data_in, data_out = data_gen_train.get_data_sizes()
print(
'FEATURES:\n'
'\tdata_in: {}\n'
'\tdata_out: {}\n'.format(
data_in, data_out
)
)
gt = collect_test_labels(data_gen_test, data_out, params['mode'], params['quick_test'])
sed_gt = evaluation_metrics.reshape_3Dto2D(gt[0])
doa_gt = evaluation_metrics.reshape_3Dto2D(gt[1])
print(
'MODEL:\n'
'\tdropout_rate: {}\n'
'\tCNN: nb_cnn_filt: {}, pool_size{}\n'
'\trnn_size: {}, fnn_size: {}\n'.format(
params['dropout_rate'],
params['nb_cnn3d_filt'] if params['cnn_3d'] else params['nb_cnn2d_filt'], params['pool_size'],
params['rnn_size'], params['fnn_size']
)
)
model = keras_model.get_model(data_in=data_in, data_out=data_out, dropout_rate=params['dropout_rate'],
nb_cnn2d_filt=params['nb_cnn2d_filt'], pool_size=params['pool_size'],
rnn_size=params['rnn_size'], fnn_size=params['fnn_size'],
classification_mode=params['mode'], weights=params['loss_weights'])
best_metric = 99999
conf_mat = None
best_conf_mat = None
best_epoch = -1
patience_cnt = 0
epoch_metric_loss = np.zeros(params['nb_epochs'])
tr_loss = np.zeros(params['nb_epochs'])
val_loss = np.zeros(params['nb_epochs'])
doa_loss = np.zeros((params['nb_epochs'], 6))
sed_loss = np.zeros((params['nb_epochs'], 2))
nb_epoch = 2 if params['quick_test'] else params['nb_epochs']
for epoch_cnt in range(nb_epoch):
start = time.time()
hist = model.fit_generator(
generator=data_gen_train.generate(),
steps_per_epoch=2 if params['quick_test'] else data_gen_train.get_total_batches_in_data(),
validation_data=data_gen_test.generate(),
validation_steps=2 if params['quick_test'] else data_gen_test.get_total_batches_in_data(),
epochs=1,
verbose=0
)
tr_loss[epoch_cnt] = hist.history.get('loss')[-1]
val_loss[epoch_cnt] = hist.history.get('val_loss')[-1]
pred = model.predict_generator(
generator=data_gen_test.generate(),
steps=2 if params['quick_test'] else data_gen_test.get_total_batches_in_data(),
verbose=2
)
if params['mode'] == 'regr':
sed_pred = evaluation_metrics.reshape_3Dto2D(pred[0]) > 0.5
doa_pred = evaluation_metrics.reshape_3Dto2D(pred[1])
sed_loss[epoch_cnt, :] = evaluation_metrics.compute_sed_scores(sed_pred, sed_gt, data_gen_test.nb_frames_1s())
if params['azi_only']:
doa_loss[epoch_cnt, :], conf_mat = evaluation_metrics.compute_doa_scores_regr_xy(doa_pred, doa_gt,
sed_pred, sed_gt)
else:
doa_loss[epoch_cnt, :], conf_mat = evaluation_metrics.compute_doa_scores_regr_xyz(doa_pred, doa_gt,
sed_pred, sed_gt)
epoch_metric_loss[epoch_cnt] = np.mean([
sed_loss[epoch_cnt, 0],
1-sed_loss[epoch_cnt, 1],
2*np.arcsin(doa_loss[epoch_cnt, 1]/2.0)/np.pi,
1 - (doa_loss[epoch_cnt, 5] / float(doa_gt.shape[0]))]
)
plot_functions(unique_name, tr_loss, val_loss, sed_loss, doa_loss, epoch_metric_loss)
patience_cnt += 1
if epoch_metric_loss[epoch_cnt] < best_metric:
best_metric = epoch_metric_loss[epoch_cnt]
best_conf_mat = conf_mat
best_epoch = epoch_cnt
model.save('{}_model.h5'.format(unique_name))
patience_cnt = 0
print(
'epoch_cnt: %d, time: %.2fs, tr_loss: %.2f, val_loss: %.2f, '
'F1_overall: %.2f, ER_overall: %.2f, '
'doa_error_gt: %.2f, doa_error_pred: %.2f, good_pks_ratio:%.2f, '
'error_metric: %.2f, best_error_metric: %.2f, best_epoch : %d' %
(
epoch_cnt, time.time() - start, tr_loss[epoch_cnt], val_loss[epoch_cnt],
sed_loss[epoch_cnt, 1], sed_loss[epoch_cnt, 0],
doa_loss[epoch_cnt, 1], doa_loss[epoch_cnt, 2], doa_loss[epoch_cnt, 5] / float(sed_gt.shape[0]),
epoch_metric_loss[epoch_cnt], best_metric, best_epoch
)
)
if patience_cnt > params['patience']:
break
print('best_conf_mat : {}'.format(best_conf_mat))
print('best_conf_mat_diag : {}'.format(np.diag(best_conf_mat)))
print('saved model for the best_epoch: {} with best_metric: {}, '.format(best_epoch, best_metric))
print('DOA Metrics: doa_loss_gt: {}, doa_loss_pred: {}, good_pks_ratio: {}'.format(
doa_loss[best_epoch, 1], doa_loss[best_epoch, 2], doa_loss[best_epoch, 5] / float(sed_gt.shape[0])))
print('SED Metrics: F1_overall: {}, ER_overall: {}'.format(sed_loss[best_epoch, 1], sed_loss[best_epoch, 0]))
print('unique_name: {} '.format(unique_name))
if __name__ == "__main__":
try:
sys.exit(main(sys.argv))
except (ValueError, IOError) as e:
sys.exit(e)