-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhisto.c
271 lines (247 loc) · 8.63 KB
/
histo.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
//Copyright 2014 The FSC Authors. All Rights Reserved.
//
//Licensed under the Apache License, Version 2.0 (the "License");
//you may not use this file except in compliance with the License.
//You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//------------------------------------------------------------------------------
//
// Histograms / cumulative frequencies / spread functions
//
// Author: Skal ([email protected])
#include "./fsc.h"
#include <stdio.h>
#include <math.h>
#include <assert.h>
//------------------------------------------------------------------------------
void FSCCountSymbols(const uint8_t* in, size_t in_size,
uint32_t counts[MAX_SYMBOLS]) {
size_t n;
memset(counts, 0, MAX_SYMBOLS * sizeof(counts[0]));
for (n = 0; n < in_size; ++n) ++counts[in[n]];
}
//------------------------------------------------------------------------------
// Selection helper function
static void SwapU32(uint32_t* const A, uint32_t* const B) {
const uint32_t tmp = *A;
*A = *B;
*B = tmp;
}
static void CheckSwapU32(uint32_t* const A, uint32_t* const B) {
assert(A <= B);
if (A != B && *A < *B) SwapU32(A, B);
}
// select the Mth largest keys amongst N
void Select(uint32_t* const keys, int M, int N) {
if (M == N || N <= 1) return; // done
int low = 0, hi = N - 1;
while (1) {
if (low + 1 >= hi) { // only 1 or 2 left
if (low + 1 == hi) CheckSwapU32(keys + low, keys + low + 1);
return; // done!
}
const int mid = (low + hi) >> 1;
// sort low | mid | hi triplet of entries
CheckSwapU32(keys + low, keys + hi);
CheckSwapU32(keys + mid, keys + hi);
CheckSwapU32(keys + low, keys + mid);
// move mid in position low + 1 (will serve as pivot)
SwapU32(keys + low + 1, keys + mid);
const uint32_t pivot = keys[low + 1];
// and start loop over [low + 2, hi - 1] sub-range
int i = low + 2;
int j = hi - 1;
while (1) {
while (keys[i] > pivot) ++i;
while (keys[j] < pivot) --j;
if (j < i) break; // they crossed the streams!
SwapU32(keys + i, keys + j);
}
keys[low + 1] = keys[j]; // move pivot back to position
keys[j] = pivot;
// recurse down (only one branch)
if (j >= M) {
hi = j - 1;
} else {
low = j + 1;
}
}
}
//------------------------------------------------------------------------------
// Analyze counts[] and renormalize with Squeaky Wheel fix, so that
// the total is rescaled to be equal to tab_size exactly.
int FSCNormalizeCounts(uint32_t counts[MAX_SYMBOLS], int max_symbol,
int log_tab_size) {
const int tab_size = 1 << log_tab_size;
uint64_t total = 0;
int nb_symbols = 0;
int n;
int last_nz = 0;
for (n = 0; n < max_symbol; ++n) {
total += counts[n];
if (counts[n] > 0) {
++nb_symbols;
last_nz = n + 1;
}
}
if (nb_symbols < 1) return 0; // won't work
if (log_tab_size < 1) return 0;
if (nb_symbols > tab_size) return 0;
max_symbol = last_nz;
uint32_t keys[MAX_SYMBOLS];
int miss = tab_size;
const float norm = 1.f * tab_size / total;
int non_zero = 0;
const float key_norm = (float)((1u << 24) / MAX_SYMBOLS);
for (n = 0; n < max_symbol; ++n) {
if (counts[n] > 0) {
const float target = norm * counts[n];
counts[n] = (uint32_t)(target + .5); // round
if (counts[n] == 0) counts[n] = 1;
miss -= counts[n];
const uint32_t error = (uint32_t)(key_norm * (target - counts[n]));
keys[non_zero++] = (error * MAX_SYMBOLS) + n;
}
}
if (miss == 0) return max_symbol;
if (miss > 0) {
Select(keys, miss, non_zero);
for (n = 0; n < miss; ++n) {
++counts[keys[n] % MAX_SYMBOLS];
}
} else {
// Overflow case. We need to decrease some counts, but need extra care
// to not make any counts[] go to zero. So we just loop and shave off
// the largest elements greater than 2 until we're good. It's garanteed
// to terminate.
non_zero = 0;
const uint32_t cap_count = (1u << 23) - 1; // to avoid overflow
for (n = 0; n < max_symbol; ++n) {
if (counts[n] > 1) {
const uint32_t c = (counts[n] > cap_count) ? cap_count : counts[n];
keys[non_zero++] = (c * MAX_SYMBOLS) + n;
}
}
assert(non_zero > 0);
miss = -miss;
Select(keys, miss, non_zero);
int to_fix = miss;
while (to_fix > 0) {
for (n = 0; n < miss && to_fix > 0; ++n) {
const uint32_t idx = keys[n] % MAX_SYMBOLS;
if (counts[idx] > 1) {
--counts[idx];
--to_fix;
}
}
}
}
return max_symbol;
}
//------------------------------------------------------------------------------
// Spread functions
#define MAX_INSERT_ITERATION 0 // limit bucket-sort complexity (0=off)
// insert with limited bucket sort
#define INSERT(s, key) do { \
const double k = (key); \
const int b = (int)(k); \
if (b < tab_size) { \
const int S = (s); \
int16_t* p = &buckets[b]; \
int M = MAX_INSERT_ITERATION; \
while (M-- && *p != -1 && keys[*p] < k) { \
p = &next[*p]; \
} \
next[S] = *p; \
*p = S; \
keys[S] = k; \
} \
} while (0)
int BuildSpreadTableBucket(int max_symbol, const uint32_t counts[],
int log_tab_size, uint8_t symbols[]) {
const int tab_size = 1 << log_tab_size;
int s, n, pos;
int16_t* buckets = NULL; // entry to linked list of bucket's symbol
int16_t next[MAX_SYMBOLS]; // linked list of symbols in the same bucket
double keys[MAX_SYMBOLS]; // key associated to each symbol
buckets = (int16_t*)malloc(tab_size * sizeof(*buckets));
if (buckets == NULL) return 0;
for (n = 0; n < tab_size; ++n) {
buckets[n] = -1; // NIL
}
for (s = 0; s < max_symbol; ++s) {
if (counts[s] > 0) {
INSERT(s, 0.5 * tab_size / counts[s]);
}
}
for (n = 0, pos = 0; n < tab_size && pos < tab_size; ++pos) {
while (1) {
const int s = buckets[pos];
if (s < 0) break;
symbols[n++] = s;
buckets[pos] = next[s]; // POP s
INSERT(s, keys[s] + 1. * tab_size / counts[s]);
}
}
// n < tab_size can happen due to rounding errors
for (; n != tab_size; ++n) symbols[n] = symbols[n - 1];
free(buckets);
return 1;
}
//------------------------------------------------------------------------------
static inline int ReverseBits(int i, int max_bits) {
const int tab_size = 1 << max_bits;
int v = 0, n = max_bits;
while (n-- > 0) {
v |= (i & 1) << n;
i >>= 1;
}
return v;
}
int BuildSpreadTableReverse(int max_symbol, const uint32_t counts[],
int log_tab_size, uint8_t symbols[]) {
const int tab_size = 1 << log_tab_size;
int s, n, pos;
for (s = 0, pos = 0; s < max_symbol; ++s) {
for (n = 0; n < counts[s]; ++n, ++pos) {
symbols[ReverseBits(pos, log_tab_size)] = s;
}
}
return 1;
}
//------------------------------------------------------------------------------
int BuildSpreadTableModulo(int max_symbol, const uint32_t counts[],
int log_tab_size, uint8_t symbols[]) {
const int tab_size = 1 << log_tab_size;
const int kStep = ((tab_size >> 1) + (tab_size >> 3) + 1);
int s, n, pos;
for (s = 0, pos = 0; s < max_symbol; ++s) {
for (n = 0; n < counts[s]; ++n, ++pos) {
const int v = pos * kStep;
const int slot = (v ^ CRYPTO_KEY) & (tab_size - 1);
symbols[slot] = s;
}
}
return 1;
}
//------------------------------------------------------------------------------
int BuildSpreadTablePack(int max_symbol, const uint32_t counts[],
int log_tab_size, uint8_t symbols[]) {
const int tab_size = 1 << log_tab_size;
const int kStep = ((tab_size >> 1) + (tab_size >> 3) + 1);
int s, n, pos;
for (s = 0, pos = 0; s < max_symbol; ++s) {
for (n = 0; n < counts[s]; ++n, ++pos) {
symbols[pos] = s;
}
}
return 1;
}
//------------------------------------------------------------------------------