-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune.py
312 lines (274 loc) · 12.3 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import argparse
import os
import shutil
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
import wandb
from torch.autograd import Variable
from torch.utils.data.sampler import SubsetRandomSampler
from torchvision import transforms
from tqdm import tqdm
from utils import (LinearModel, Logger, evaluate_adv, fix_bn, fix_model,
setup_seed)
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--experiment', type=str, help='exp name', default='')
# data
parser.add_argument('--root', type=str, required=True)
parser.add_argument('--dataset', default='cifar10', type=str)
parser.add_argument('--batch_size', type=int, default=512)
parser.add_argument('--test_batch_size', type=int, default=128)
parser.add_argument('--epochs', type=int, default=25)
parser.add_argument('--start_epoch', default=0, type=int)
# model
parser.add_argument('--arch', type=str, default='WideResNet34')
parser.add_argument('--trainmode', default='adv', type=str, help='adv or normal or test')
parser.add_argument('--fixmode', default='f1', type=str, help='f1: fix nothing, f2: fix previous 3 stages, f3: fix all except fc')
parser.add_argument('--fixbn', action='store_true', help='if specified, fix bn for the layers been fixed')
# attack details
parser.add_argument('--epsilon', type=float, default=8. / 255.)
parser.add_argument('--num_steps_train', type=int, default=10)
parser.add_argument('--num_steps_test', type=int, default=20)
parser.add_argument('--step_size', type=float, default=2. / 255.)
parser.add_argument('--beta', type=float, default=6.0, help='regularization, i.e., 1/lambda in TRADES')
# lr, optimizer and scheduler
parser.add_argument('--lr', type=float, default=0.01)
parser.add_argument('--weight_decay', '--wd', default=2e-4, type=float)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--decreasing_lr', default='15,20', help='multistep LR decay milestones')
# logging and checkpoint
parser.add_argument('--log_interval', type=int, default=10)
parser.add_argument('--save_freq', '-s', default=1, type=int)
parser.add_argument('--checkpoint', default='', type=str)
# wandb
parser.add_argument('--project', type=str, required=True)
parser.add_argument('--entity', type=str, required=True)
parser.add_argument('--id', default=wandb.util.generate_id(), help='wandb id to resume run')
parser.add_argument('--offline', action='store_true')
parser.add_argument('--name', default='', help='wandb run name')
return parser
def get_loaders(args):
T_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
])
T_test = transforms.Compose([
transforms.ToTensor(),
])
if args.dataset == 'cifar10':
trainset = torchvision.datasets.CIFAR10(
root=args.root, train=True, download=True, transform=T_train)
valset = torchvision.datasets.CIFAR10(
root=args.root, train=True, download=True, transform=T_test)
testset = torchvision.datasets.CIFAR10(
root=args.root, train=False, download=True, transform=T_test)
# create class balanced val-set
train_indices = list(range(50000))
val_indices = []
count = np.zeros(10)
for index in range(len(trainset)):
_, target = trainset[index]
if np.all(count==100):
break
if count[target] < 100:
count[target] += 1
val_indices.append(index)
train_indices.remove(index)
train_sampler = SubsetRandomSampler(train_indices)
valid_sampler = SubsetRandomSampler(val_indices)
elif args.dataset == 'cifar100':
trainset = torchvision.datasets.CIFAR100(
root=args.root, train=True, download=True, transform=T_train)
valset = torchvision.datasets.CIFAR100(
root=args.root, train=True, download=True, transform=T_test)
testset = torchvision.datasets.CIFAR100(
root=args.root, train=False, download=True, transform=T_test)
# create class balanced val-set
train_indices = list(range(50000))
val_indices = []
count = np.zeros(100)
for index in range(len(trainset)):
_, target = trainset[index]
if np.all(count==10):
break
if count[target] < 10:
count[target] += 1
val_indices.append(index)
train_indices.remove(index)
train_sampler = SubsetRandomSampler(train_indices)
valid_sampler = SubsetRandomSampler(val_indices)
kwargs = {'num_workers': 16}
train_loader = torch.utils.data.DataLoader(
trainset, batch_size=args.batch_size, sampler=train_sampler, **kwargs)
vali_loader = torch.utils.data.DataLoader(
valset, batch_size=args.batch_size, sampler=valid_sampler, **kwargs)
test_loader = torch.utils.data.DataLoader(
testset, batch_size=args.test_batch_size, shuffle=False, **kwargs)
return train_loader, vali_loader, test_loader
def compute_loss(model, x, y, optimizer, step_size, epsilon, perturb_steps, beta, trainmode, fixbn, fixmode):
if trainmode == "adv":
batch_size = len(x)
criterion_kl = nn.KLDivLoss(reduction='sum').cuda()
model.eval()
x_adv = x.detach() + 0.001 * torch.randn(x.shape).cuda(x.device).detach()
for _ in range(perturb_steps):
x_adv.requires_grad_()
with torch.enable_grad():
loss_kl = criterion_kl(F.log_softmax(model(x_adv), dim=1), F.softmax(model(x), dim=1))
grad = torch.autograd.grad(loss_kl, [x_adv])[0]
x_adv = x_adv.detach() + step_size * torch.sign(grad.detach())
x_adv = torch.min(
torch.max(x_adv, x - epsilon), x + epsilon)
x_adv = torch.clamp(x_adv, 0.0, 1.0)
x_adv = Variable(torch.clamp(x_adv, 0.0, 1.0), requires_grad=False)
optimizer.zero_grad()
model.train()
if fixbn:
fix_bn(model, fixmode)
logits = model(x)
loss = F.cross_entropy(logits, y)
if trainmode == "adv":
logits_adv = model(x_adv)
loss_robust = (1.0 / batch_size) * criterion_kl(F.log_softmax(logits_adv, dim=1), F.softmax(logits, dim=1))
loss += beta * loss_robust
return loss
def train(args, model, train_loader, optimizer, epoch):
model.train()
pbar = tqdm(train_loader, leave=False)
for batch_idx, (data, target) in enumerate(pbar):
pbar.set_description_str(f"Epoch {epoch}")
data, target = data.cuda(non_blocking=True), target.cuda(non_blocking=True)
optimizer.zero_grad()
loss = compute_loss(model,
x=data,
y=target,
optimizer=optimizer,
step_size=args.step_size,
epsilon=args.epsilon,
perturb_steps=args.num_steps_train,
beta=args.beta,
trainmode=args.trainmode,
fixbn=args.fixbn,
fixmode=args.fixmode)
loss.backward()
optimizer.step()
pbar.set_postfix({"loss": loss.item(), "lr": optimizer.param_groups[0]['lr']})
if batch_idx % args.log_interval == 0:
wandb.log({
f'{args.wandb_panel_name}/epoch': epoch,
f'{args.wandb_panel_name}/train loss': loss.item(),
f'{args.wandb_panel_name}/lr': optimizer.param_groups[0]['lr'],
})
def evaluate_clean(model, loader):
model.eval()
correct = 0
whole = 0
with torch.no_grad():
for data, target in loader:
data, target = data.cuda(non_blocking=True), target.cuda(non_blocking=True)
output = model(data)
pred = output.max(1, keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).sum().item()
whole += len(target)
test_accuracy = correct / whole
return test_accuracy * 100
def main(args):
setup_seed(args.seed)
model_dir = os.path.join('checkpoints_pretrain', wandb.run.id)
os.makedirs(model_dir, exist_ok=True)
if args.trainmode == 'adv':
args.wandb_panel_name = 'TRADES'
print(f"Adv ckpt dump: {os.path.join(model_dir, 'ata_best_model.pt')}")
elif args.trainmode == 'normal':
args.wandb_panel_name = 'LINEAR'
print(f"Clean ckpt dump: {os.path.join(model_dir, 'best_model.pt')}")
else:
args.wandb_panel_name = args.trainmode
log = Logger(os.path.join(model_dir))
log.info(f"run: {args.name}\n")
train_loader, val_loader, test_loader = get_loaders(args)
if args.dataset == 'cifar10':
num_classes = 10
elif args.dataset == 'cifar100':
num_classes = 100
else:
raise ValueError
model = LinearModel(num_classes, args)
model = torch.nn.DataParallel(model)
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
decreasing_lr = list(map(int, args.decreasing_lr.split(',')))
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=decreasing_lr, gamma=0.1)
start_epoch = args.start_epoch
checkpoint = torch.load(args.checkpoint, map_location="cpu")
state_dict = checkpoint['model']
status = model.load_state_dict(state_dict, strict=False)
print(status)
model.cuda()
log.info('read checkpoint {}'.format(args.checkpoint))
fix_model(model, args.fixmode)
if args.trainmode == 'normal':
best_ckpt_name = f'best_model_lr{args.lr}_{args.fixmode}_{args.fixbn}.pt'
else:
best_ckpt_name = f'ata_best_model_lr{args.lr}_beta{args.beta}_{args.fixmode}_{args.fixbn}.pt'
best_acc = 0.
for epoch in range(start_epoch + 1, args.epochs + 1):
train(args, model, train_loader, optimizer, epoch)
scheduler.step()
if args.trainmode != 'normal':
val_acc = evaluate_adv(model, val_loader, epsilon=args.epsilon, alpha=args.step_size,
criterion=F.cross_entropy, log=log, attack_iter=args.num_steps_test)
else:
val_acc = evaluate_clean(model, val_loader)
wandb.log({f'{args.wandb_panel_name}/val acc': val_acc})
if val_acc > best_acc:
print(f'Saving at epoch {epoch}')
best_acc = val_acc
torch.save({
'epoch': epoch,
'state_dict': model.state_dict(),
# 'optim': optimizer.state_dict(),
'best_acc': best_acc,
}, os.path.join(model_dir, best_ckpt_name))
# Evaluate on best model
filename = os.path.join(model_dir, best_ckpt_name)
best_ckpt = torch.load(filename)
print(f"Evaluating checkpoint of epoch {best_ckpt['epoch']} (best)")
model.load_state_dict(best_ckpt['state_dict'])
test_tacc = evaluate_clean(model, test_loader)
test_atacc = evaluate_adv(model, test_loader, epsilon=args.epsilon, alpha=args.step_size, criterion=F.cross_entropy, log=log, attack_iter=args.num_steps_test)
log.info(f"On the {best_ckpt_name}, test tacc is {test_tacc}, test atacc is {test_atacc}")
log_file = log.get_path()
shutil.copyfile(log_file, os.path.join(wandb.run.dir, 'finetune_log.txt'))
# gama evaluation
torch.cuda.empty_cache()
from gama_eval import get_parser as get_gama_parser
from gama_eval import main as gama_eval
parser = get_gama_parser()
gama_args, _ = parser.parse_known_args()
gama_args.ckpt = filename
gama_args.name = args.name
gama_args.dataset = args.dataset
gama_args.arch = args.arch
gama_args.root = args.root
gama_acc = gama_eval(gama_args)
return test_tacc, test_atacc, gama_acc
if __name__ == '__main__':
parser = get_parser()
args = parser.parse_args()
wandb.init(
project=args.project,
entity=args.entity,
id=args.id,
name=args.name if args.name else None,
resume=True,
mode='offline' if args.offline else 'online',
config=args,
save_code=True,
)
main(args)