-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
258 lines (216 loc) · 7.89 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import math
import os
import random
import time
import numpy as np
import torch
import torch.nn as nn
import models.wideresnet as wideresnets
import wandb
from models.resnet import resnet18
class PretrainModel(nn.Module):
def __init__(self, args):
super().__init__()
self.backbone, self.features_dim = get_model(args)
if args.dataset == 'cifar10': num_classes = 10
elif args.dataset == 'cifar100': num_classes = 100
else: raise ValueError
self.classifier = nn.Linear(self.features_dim, num_classes)
self.projector = nn.Sequential(
nn.Linear(self.features_dim, args.proj_hdim),
nn.ReLU(),
nn.Linear(args.proj_hdim, args.proj_odim),
)
def forward(self, x, proj=False, return_feat=False, linear=False):
x = self.backbone(x)
if linear and hasattr(self, 'classifier'):
return self.classifier(x), x
if proj:
if return_feat:
return self.projector(x), x
return self.projector(x)
return x
class LinearModel(nn.Module):
def __init__(self, num_classes, args):
super().__init__()
self.backbone, self.features_dim = get_model(args)
self.fc = nn.Linear(self.features_dim, num_classes)
def forward(self, x):
x = self.backbone(x)
x = self.fc(x)
return x
class ModelwithLinear(nn.Module):
def __init__(self, model, inplanes, num_classes=10):
super(ModelwithLinear, self).__init__()
self.model = model
self.classifier = nn.Linear(inplanes, num_classes)
def forward(self, img):
x = self.model(img)
out = self.classifier(x)
return out
class Logger(object):
def __init__(self, path):
self.path = path
self.file = os.path.join(self.path, 'log.txt')
def info(self, msg):
print(msg)
with open(self.file, 'a') as f:
f.write(msg + "\n")
def get_path(self):
return self.file
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
def get_model(args):
if 'resnet' in args.arch:
print('Initializing resnet backbone...')
backbone = resnet18()
features_dim = backbone.fc.in_features
backbone.fc = nn.Identity()
if 'cifar' in args.dataset:
backbone.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=2, bias=False)
backbone.maxpool = nn.Identity()
elif 'wideresnet' in args.arch.lower():
print('Initializing wideresnet backbone...')
backbone = getattr(wideresnets, args.arch)()
features_dim = backbone.nChannels
backbone.fc = nn.Identity()
else:
raise ValueError
return backbone, features_dim
def fix_bn(model, fixmode):
if fixmode == 'f1':
# fix none
pass
elif fixmode == 'f2':
# fix previous three layers
for name, m in model.named_modules():
if not ("layer4" in name or "fc" in name):
m.eval()
elif fixmode == 'f3':
# fix every layer except fc
# fix previous four layers
for name, m in model.named_modules():
if not ("fc" in name or 'classifier' in name):
m.eval()
else:
assert False
def fix_model(model, fixmode):
if fixmode == 'f1':
# fix none
pass
elif fixmode == 'f2':
# fix previous three layers
for name, param in model.named_parameters():
if not ("layer4" in name or "fc" in name):
param.requires_grad = False
else:
print("trainable {}".format(name))
elif fixmode == 'f3':
# fix every layer except fc; fix previous four layers
for name, param in model.named_parameters():
if not ("fc" in name or 'classifier' in name):
param.requires_grad = False
else:
print("trainable {}".format(name))
else:
assert False
@torch.enable_grad()
def pgd_attack(model, images, labels, eps=8. / 255., alpha=2. / 255., iters=20, advFlag=None, forceEval=True, randomInit=True):
loss = nn.CrossEntropyLoss().cuda()
if randomInit:
delta = torch.rand_like(images) * eps * 2 - eps
else:
delta = torch.zeros_like(images)
delta = torch.nn.Parameter(delta, requires_grad=True)
model.eval()
for _ in range(iters):
model.zero_grad()
outputs = model(images + delta)
cost = loss(outputs, labels)
delta_grad = torch.autograd.grad(cost, [delta])[0]
delta.data = delta.data + alpha * delta_grad.sign()
delta.grad = None
delta.data = torch.clamp(delta.data, min=-eps, max=eps)
delta.data = torch.clamp(images + delta.data, min=0, max=1) - images
model.zero_grad()
return (images + delta).detach()
def evaluate_adv(model, test_loader, epsilon, alpha, criterion, log, attack_iter=40):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
# fix random seed for testing
torch.manual_seed(1)
model.eval()
end = time.time()
for i, (input, target) in enumerate(test_loader):
input, target = input.cuda(non_blocking=True), target.cuda(non_blocking=True)
input_adv = pgd_attack(model, input, target, eps=epsilon, iters=attack_iter, alpha=alpha).data
# compute output
output = model.eval()(input_adv)
loss = criterion(output, target)
# measure accuracy and record loss
prec1, = accuracy(output.data, target, topk=(1,))
top1.update(prec1, input.size(0))
losses.update(loss.item(), input.size(0))
batch_time.update(time.time() - end)
end = time.time()
return top1.avg.item()
def save_checkpoint(model, optimizer, epoch):
print('=====> Saving checkpoint...')
save_dir = f'./checkpoints_pretrain/{wandb.run.id}'
os.makedirs(save_dir, exist_ok=True)
state = {
'model': model.state_dict(),
'optim': optimizer.state_dict(),
'epoch': epoch,
'rng_state': torch.get_rng_state()
}
filename = f"{save_dir}/epoch_{epoch}.ckpt"
torch.save(state, filename)
return filename
def adjust_learning_rate(args, optimizer, epoch):
lr = args.lr
eta_min = lr * (args.lr_decay_rate ** 3)
lr = eta_min + (lr - eta_min) * (
1 + math.cos(math.pi * epoch / args.epochs)) / 2
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def warmup_learning_rate(args, epoch, batch_id, total_batches, optimizer):
if args.warm and epoch <= args.warm_epochs:
p = (batch_id + (epoch - 1) * total_batches) / \
(args.warm_epochs * total_batches)
lr = args.warmup_from + p * (args.warmup_to - args.warmup_from)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].flatten().float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res