-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
269 lines (227 loc) · 8.15 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
from bs4 import BeautifulSoup
#from matplotlib import pyplot as plt
from urllib2 import HTTPError
from nltk.stem.wordnet import WordNetLemmatizer
from scipy.stats import entropy
from numpy.linalg import norm
from gensim import corpora, models, similarities, matutils
from requests.auth import HTTPBasicAuth
from time import time
from six import iteritems
import threading
import requests
import sys, traceback
import urllib2
import urllib
import sys
import nltk
import numpy as np
import re
import json
import random
from .liveqa import websearch
from .liveqa import nltk_utils
from .liveqa import qs_proc
k_topics = 80
ya_qurl = 'https://answers.yahoo.com/question/index?qid='
ya_new = 'https://answers.yahoo.com/dir/index/answer'
ya_list = 'https://answers.yahoo.com/dir/index/discover'
ya_search = 'https://answers.yahoo.com/search/search_result?p='
ya_domain = 'https://answers.yahoo.com'
bing_api = 'https://api.datamarket.azure.com/Bing/SearchWeb/v1/Web?$format=json&Query='
bing_key = 'IgVbvvtgQVYI7Yfu9hPgVx0Tmbih1gq5lFOXaIQH4f8'
user_agent = 'Mozilla/5.0 (Linux; Android 4.0.4; Galaxy Nexus Build/IMM76B) AppleWebKit/535.19 (KHTML, like Gecko) Chrome/18.0.1025.133 Mobile Safari/535.19'
RESETC = '\033[0:0m'
BLACK = '\033[0:30m'
RED = '\033[0:31m'
GREEN = '\033[0:32m'
YELLOW = '\033[0:33m'
BLUE = '\033[0:34m'
PURPLE = '\033[0:35m'
CYAN = '\033[0:36m'
WHITE = '\033[0:37m'
def calc_jsd(p, q):
"""
Calculate JSD
"""
_P = np.zeros(k_topics, dtype=np.double)
_Q = np.zeros(k_topics, dtype=np.double)
ti = 0
for i in range(k_topics):
if i == p[ti][0]:
_P[i] = p[ti][1]
if len(p) - 1 > ti:
ti += 1
ti = 0
for i in range(k_topics):
if i == q[ti][0]:
_Q[i] = q[ti][1]
if len(q) - 1> ti:
ti += 1
_P = _P / norm(_P, ord=1)
_Q = _Q / norm(_Q, ord=1)
_M = 0.5 * (_P + _Q)
return 0.5 * (entropy(_P, _M) + entropy(_Q, _M))
def get_similarity(model, dictionary, doc1, doc2):
#dictionary, model = get_lda_model(fname)
doc1 = nltk_utils.get_word_lists([doc1])[0]
doc1_bow = dictionary.doc2bow(doc1)
doc1_lda = model[doc1_bow]
doc2 = nltk_utils.get_word_lists([doc2])[0]
doc2_bow = dictionary.doc2bow(doc2)
doc2_lda = model[doc2_bow]
jsd = calc_jsd(doc1_lda, doc2_lda)
return jsd
def get_id2word(token2id):
id2word = {}
for i, v in enumerate(token2id.keys()):
id2word[token2id[v]] = v
return id2word
def get_lda_model(documents):
#data = ''
#with open(fname, 'r') as f:
# data = f.read()
# data = data.decode('utf-8', errors = 'ignore')
#documents = split_doc(data)
word_lists = nltk_utils.get_word_lists(documents)
#print word_lists
#vocab = get_vocab(word_lists)
dictionary = corpora.Dictionary(word_lists)
dictionary.filter_extremes(no_below=2, no_above=0.8)
id2word = dict((v, k) for k, v in iteritems(dictionary.token2id))
#get_id2word(dictionary.token2id)
doc2bow_vecs = []
for l in word_lists:
vec = dictionary.doc2bow(l)
doc2bow_vecs.append(vec)
model = models.LdaModel(doc2bow_vecs,
id2word=id2word,
alpha='auto',
num_topics=k_topics)
return dictionary, model
def main():
q_url = qs_proc.get_newest_question()
print q_url
overall_t0 = time()
#Get question's details
q_det = qs_proc.get_question_details(q_url)
print GREEN + 'Question Details: ' + RESETC
print '\t Url: %s' % q_det['url']
print '\t %sTitle: %s%s' % (GREEN, q_det['title'], RESETC)
print '\t Body: %s' % q_det['body']
#print '\t Answer: %s\n\n' % q_det['best_answer']
#Process title of the question
q_title_proc = nltk_utils.get_word_lists(
[nltk_utils.preprocess_text(q_det['title'])])[0]
#Add first word of the question to the processed title
#We'll use this as our query string and usually, in english, the first
#word of a question is very important e.g. (Why, How, Which)
q_title_proc = q_det['title'].split()[0] + ' ' + ' '.join(set(q_title_proc))
#print 'Title Processed: {}\n\n'.format(q_title_proc)
q_doc = qs_proc.question_to_document(q_det)
q_doc = nltk_utils.preprocess_text(q_doc)
urls = websearch.search('\'' + q_title_proc + '\'', q_url)
documents_text = []
#print '%s Fetching document from the web search %s\n' % (PURPLE, RESETC)
documents_text = websearch.get_articles(urls)
documents_text.append(q_doc)
t0 = time()
dictionary, model = get_lda_model(documents_text)
t1 = time()
#print 'time creating lda model: {}'.format(t1 - t0)
#print '\n%s Document\'s probability distribution %s\n' % (PURPLE, RESETC)
#topics = model.show_topics(num_topics=25, num_words=10)
#for t in topics:
# print t
qs_details = qs_proc.search_questions(q_title_proc, q_url, dictionary)
#print '%s Calculating JSD for each related question %s\n' % (PURPLE, RESETC)
t0 = time()
related_qs = []
for q in qs_details:
if not q:
continue
doc = qs_proc.question_to_document(q)
doc = nltk_utils.preprocess_text(doc)
#print 'doc: %s' % doc
#print 'q_doc: %s' % q_doc
jsd = get_similarity(model, dictionary, q_doc, doc)
related_qs.append({'jsd': jsd, 'q': q})
related_qs = sorted(related_qs, key=lambda x: x['jsd'])
t1 = time()
#print 'time calculating JSDs {}'.format(t1 - t0)
top_q = {}
#for q in related_qs:
# if len(q['q']['best_answer']) > 10 and len(q['q']['best_answer']) < 1000:
# top_q = q
# break
#if not top_q:
# top_q = related_qs[0]
top_q = related_qs[0]
jsd = top_q['jsd']
title = top_q['q']['title']
best_answer = top_q['q']['best_answer']
print 'JSD: {}'.format(jsd)
try:
print 'Best related question: {}'.format(title)
except:
print 'Best related question: {}'.format(title.decode('utf-8'))
try:
print '{}Best Answer: {}{}'.format(GREEN, best_answer, RESETC)
except:
try:
print '{}Best Answer: {}{}'.format(GREEN, best_answer.decode('utf-8', errors='ignore'), RESETC)
except:
print '{}Best Answer: {}{}'.format(GREEN, best_answer.encode('utf-8', errors='ignore'), RESETC)
print top_q['q']['url']
print '\n\n'
overall_t1 = time()
#print 'Overall time: {}'.format(overall_t1 - overall_t0)
return {'oq':q_det, 'answer': top_q, 'time': overall_t1 - overall_t0}
def run(q_id, q_category, q_title, q_body):
#q_url = qs_proc.get_newest_question()
#print q_url
q_url = ya_qurl + q_id
overall_t0 = time()
#q_det = qs_proc.get_question_details(q_url)
q_det = {
'title': q_title,
'body': q_body,
'best_answer': '',
'answers': '',
'url': q_id,
'id': q_id,
'category': q_category
}
q_title_proc = nltk_utils.get_word_lists(
[nltk_utils.preprocess_text(q_det['title'])])[0]
q_title_proc = q_det['title'].split()[0] + ' ' + ' '.join(set(q_title_proc))
q_doc = qs_proc.question_to_document(q_det)
q_doc = nltk_utils.preprocess_text(q_doc)
urls = websearch.search('\'' + q_title_proc + '\'', q_url)
documents_text = []
documents_text = websearch.get_articles(urls)
documents_text.append(q_doc)
t0 = time()
dictionary, model = get_lda_model(documents_text)
t1 = time()
qs_details = qs_proc.search_questions(q_title_proc, q_url, dictionary)
t0 = time()
related_qs = []
for q in qs_details:
if not q:
continue
doc = qs_proc.question_to_document(q)
doc = nltk_utils.preprocess_text(doc)
jsd = get_similarity(model, dictionary, q_doc, doc)
related_qs.append({'jsd': jsd, 'q': q})
related_qs = sorted(related_qs, key=lambda x: x['jsd'])
t1 = time()
top_q = {}
top_q = related_qs[0]
jsd = top_q['jsd']
title = top_q['q']['title']
best_answer = top_q['q']['best_answer']
overall_t1 = time()
return {'oq':q_det, 'answer': top_q, 'time': overall_t1 - overall_t0}
if __name__ == '__main__':
main()