This is a minimal implementation of the RAG model for question answering.
This is an educational project where all of the codes where explained (step by step) via a set of Arabic
youtube videos. Please check the list:
# | Title | Link | Codes |
---|---|---|---|
1 | About the Course ماذا ولمـــاذا | Video | NA |
2 | What will we build ماذا سنبنى في المشروع | Video | NA |
3 | Setup your tools الأدوات الأساسية | Video | NA |
4 | Project Architecture | Video | branch |
5 | Welcome to FastAPI | Video | branch |
6 | Nested Routes + Env Values | Video | branch |
7 | Uploading a File | Video | branch |
8 | File Processing | Video | branch |
9 | Docker - MongoDB - Motor | Video | branch |
10 | Mongo Schemes and Models | Video | branch |
11 | Mongo Indexing | Video | branch |
12 | Data Pipeline Enhancements | Video | branch |
13 | Checkpoint-1 | Video | branch |
14 | LLM Factory | Video | branch |
15 | Vector DB Factory | Video | branch |
16 | Semantic Search | Video | branch |
17 | Augmented Answers | Video | branch |
18 | Checkpoint-1 + Fix Issues | Video | branch |
19 | Ollama Local LLM Server | Video | branch |
20 | From Mongo to Postgres + SQLAlchemy & Alembic | Video | branch |
- Python 3.8 or later
sudo apt update
sudo apt install libpq-dev gcc python3-dev
- Download and install MiniConda from here
- Create a new environment using the following command:
$ conda create -n mini-rag python=3.8
- Activate the environment:
$ conda activate mini-rag
export PS1="\[\033[01;32m\]\u@\h:\w\n\[\033[00m\]\$ "
$ pip install -r requirements.txt
$ cp .env.example .env
Set your environment variables in the .env
file. Like OPENAI_API_KEY
value.
$ cd docker
$ cp .env.example .env
- update
.env
with your credentials
$ cd docker
$ sudo docker compose up -d
$ uvicorn main:app --reload --host 0.0.0.0 --port 5000
Download the POSTMAN collection from /assets/mini-rag-app.postman_collection.json