Skip to content
This repository has been archived by the owner on Jan 1, 2025. It is now read-only.
/ aero2solver Public archive

Solve Aero2 captchas automatically using the magic of machine learning and computer vision

License

Notifications You must be signed in to change notification settings

dumbasPL/aero2solver

Repository files navigation

Caution

Project archived

The project has been archived due to the aero2 service no longer utilizing a captcha.

Here is the announcement made by Polkomtel:

Szanowni Państwo,

Polkomtel Sp. z o.o. informuje, że z dniem 30 grudnia 2024 r. zakończy udostępnianie Bezpłatnego Dostępu do Internetu (dalej: BDI). Działanie to jest podyktowane wygaśnięciem obowiązku udostępniania BDI, o którym mowa w Decyzji Prezesa UKE nr DZC-WAP-5176-8/09 (21) z dnia 10 listopada 2009 r. zmienianej kolejnymi decyzjami.

Szczegółowe informacje w tym zakresie na trwałym nośniku pod bezpiecznym linkiem: https://api.plus.pl/tos/e67cb60448cc137ff40b515dbe952b35d957ec80a705707623131b08da4a710f.pdf

aero2solver

Solve Aero2 captchas automatically using the magic of machine learning and computer vision.

Usage

This project is intended to be run as a docker container. Prebuilt images are available on Docker Hub.

Requirements

This project doesn't need any GPU acceleration. Even on low end hardware the solving speed is fairly quick because the captchas are small and infrequent.

Running

you can test it by running:

docker run -it --rm dumbaspl/aero2solver

show all available options:

docker run -it --rm dumbaspl/aero2solver --help

run as a daemon that starts on boot:

docker run -d --restart=always --name aero2solver dumbaspl/aero2solver

Running on RouterOS

It is also possible to run this container on RouterOS using the container package. This removes the need for a separate machine to run the solver on.

Information

The training data was collected by marking up 500 training + 100 validation captchas by hand. The model was trained for 20000 iterations starting from the yolov4-tiny pre-trained weights.

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgments

  • Aero2 for providing "free" internet access 😉
  • darknet-rust for providing a Rust wrapper for darknet
  • Slaves Friends for marking up all the training data