Skip to content

geekswaroop/Human-Parsing

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

70 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Human Parsing IEEE

This project was taken as a year long project under IEEE NITK 2020.

Demo

Model

The implementation of PSPNet is based on here.

Environment

All the required libraries can be found in requirements.txt. They are also listed below.

click==7.1.2
cycler==0.10.0
Flask==1.1.2
imageio==2.9.0
itsdangerous==1.1.0
Jinja2==2.11.3
kiwisolver==1.3.1
MarkupSafe==1.1.1
matplotlib==3.3.3
numpy==1.19.5
Pillow==8.1.0
pyparsing==2.4.7
python-dateutil==2.8.1
six==1.15.0
torch==1.7.1
torchvision==0.8.2
typing-extensions==3.7.4.3
Werkzeug==1.0.1

Project Structure

Human-Parsing
├── app.py
├── checkpoints
│   ├── densenet
│   ├── resnet101
│   ├── resnet121
│   ├── resnet18
│   ├── resnet34
│   └── resnet50
├── Datasets
│   └── lip.py
├── eval.py
├── inference.py
├── Net
│   ├── extractors.py
│   └── pspnet.py
├── README.md
├── requirements.txt
├── static
│   ├── bg_image.jpeg
│   ├── input.png
│   └── output.png
├── templates
│   ├── display.html
│   └── home.html
└── train.py

Usage

python3 train.py -d [DATAPATH] -e [EPOCHS] -b [BATCHSIZE] --backend [densenet|resnet50|resnet34] 

python3 eval.py -d [DATAPATH] -b [BATCHSIZE] --backend [densenet|resnet50|resnet34] --visualize

python3 inference.py -d [IMAGE_DATAPATH] --backend [densenet|resnet50|resnet34] 

For each of these files, to view all the options available during training and evaluation, use --help or -h as shown below.

python3 train.py --help
python3 eval.py --help
python3 inference.py --help

Dataset

The dataset can be downloaded from here. The structure of the dataset is shown below.

LIP
├── Testing_images
│   ├── test_id.txt
│   └── testing_images [10000 entries]
├── train_segmentations_reversed [30462 entries]
├── TrainVal_images
│   ├── train_id.txt
│   ├── train_images [30462 entries]
│   ├── val_id.txt
│   └── val_images [10000 entries]
├── TrainVal_parsing_annotations
│   ├── README_parsing.md
│   ├── train_segmentations [30462 entries]
│   └── val_segmentations [10000 entries]
└── TrainVal_pose_annotations
    ├── lip_train_set.csv
    ├── lip_val_set.csv
    ├── README.md
    └── vis_annotation.py

References

About

Single Human Parsing using PSPNet

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published