Skip to content
This repository has been archived by the owner on Jan 8, 2021. It is now read-only.
/ ease-training Public archive

prepare a dataset and you are ready to train, zero coding | 只要准备好训练数据集,就可以开始训练了,无需编码

Notifications You must be signed in to change notification settings

postor/ease-training

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

94 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ease training

prepare a dataset and you are ready to train, zero coding | 只要准备好训练数据集,就可以开始训练了,无需编码

requirements | 需求

  • linux
  • docker
  • docker-compose
  • nvidia-docker

useage | 用法

clone this project and cd project folder | 克隆本项目并 cd 到项目目录

./prepare.sh
docker-compose up -d

then open http://localhost:3000 (or replace localhost with lan IP) | 打开 http://localhost:3000 或 localhost 更换为局域网 IP

home home page create dataset create dataset
training dataset page epoch chart epoch mean AP chart

use docker only | 只使用 docker

prepare your custom dataset and map to /dataset.zip and map out where you generate classes.py and parameters: | 准备数据集映射到 /dataset.zip,并向外映射 classes.py 和训练结果

docker run -it --rm --gpus all --shm-size=32G -v $(pwd)/parameters:/parameters -v $(pwd)/dataset.zip:/dataset.zip -v $(pwd):/out-classes postor/ease-training train_yolo3.py --gpus=0 --save-prefix=/parameters/

# or cache models and train with more params | 缓存下载的模型以及更多的训练参数
docker run -it --rm --gpus all --shm-size=32G -v ~/.mxnet:/root/.mxnet -v $(pwd)/parameters:/parameters -v $(pwd)/dataset.zip:/dataset.zip -v $(pwd):/out-classes --shm-size 32G postor/ease-training train_yolo3.py --batch-size=2 --gpus=1,2 --lr=0.0001 --epochs=500 --network=darknet53 --save-prefix=/parameters/

replace train_yolo3.py --network=darknet53 --data-shape=416 with train_${detector}.py --network=${network} --data-shape=${dataShape} as needed, check supported network && data shape

params or logics refer https://gluon-cv.mxnet.io/build/examples_detection/index.html and training/predict.py | 参数及逻辑参考 https://gluon-cv.mxnet.io/build/examples_detection/index.htmltraining/predict.py

after training, parameters shall be in your $(pwd)/parameters folder | 训练之后,训练结果会产生在 $(pwd)/parameters 目录

to predict, you need some sample images, put them into a folder, like $(pwd)/test, run this to generate result to $(pwd)/result | 要进行预测,你需要准备些样例图片,放到一个文件夹里,比如 $(pwd)/test,运行以命令码将预测结果生成到 $(pwd)/result

docker run -it --rm --gpus all  -v $(pwd)/parameters:/training/parameters -v $(pwd)/test:/test -v $(pwd)/result:/result -v $(pwd)/classes.py:/training/classes.py postor/ease-training:predict --model=yolo3_darknet53 --data-shape=416 --input-folder=/test --output-folder=/result

replace --model=yolo3_darknet53 --data-shape=416 with --model=${detector}_${network} --data-shape=${dataShape} if needed

supported network && data shape | 支持的 network && data shape

  • yolo3
    • darknet53
      • 320
      • 416
      • 608
    • mobilenet0.25
      • 320
      • 416
      • 608
    • mobilenet1.0
      • 320
      • 416
      • 608
  • ssd
    • mobilenet0.25
      • 300
    • vgg16_atrous
      • 300
      • 512
    • mobilenet1.0
      • 512
    • resnet50_v1
      • 512

About

prepare a dataset and you are ready to train, zero coding | 只要准备好训练数据集,就可以开始训练了,无需编码

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published