Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Relax nanosecond datetime restriction in CF time decoding #9618

Merged
merged 165 commits into from
Jan 15, 2025
Merged
Show file tree
Hide file tree
Changes from 163 commits
Commits
Show all changes
165 commits
Select commit Hold shift + click to select a range
7b5f323
implement default_precision_timestamp, refactor coding/times.py and c…
kmuehlbauer Oct 10, 2024
8784f33
align tests with new time resolution behaviour
kmuehlbauer Oct 10, 2024
b45ab23
timedelta decoding, fsspec handling
kmuehlbauer Oct 10, 2024
39086ef
fixes in coding/times.py
kmuehlbauer Oct 13, 2024
df49a40
add docs on time coding
kmuehlbauer Oct 13, 2024
adb8ca3
attempt fixing doc tests
kmuehlbauer Oct 13, 2024
266b1ed
fix issue where out-of-bounds floating point values slipped in the pr…
kmuehlbauer Oct 14, 2024
6d5f13b
convert to UTC first before stripping of tz in _unpack_time_units_and…
kmuehlbauer Oct 14, 2024
5d68bfe
reorganize pandas compatibility code, remove unneeded code, attempt t…
kmuehlbauer Oct 14, 2024
07bba69
another attempt to finally fix mypy
kmuehlbauer Oct 14, 2024
6e7f0bb
refactor out _check_date_is_after_shift
kmuehlbauer Oct 14, 2024
b4a49bb
refactor out _maybe_strip_tz_from_timestamp
kmuehlbauer Oct 14, 2024
2e1ff4f
more refactoring in coding.times.py
kmuehlbauer Oct 14, 2024
d5a7da0
more refactoring in coding.times.py
kmuehlbauer Oct 14, 2024
821b68d
minor fix in time-coding.rst
kmuehlbauer Oct 14, 2024
d066edf
set default resolution to "s", which actually means, use pandas lowes…
kmuehlbauer Oct 14, 2024
ed22da1
Add section for default units, fix options
kmuehlbauer Oct 14, 2024
8bf23f4
attempt to fix typing
kmuehlbauer Oct 14, 2024
c3a2b39
attempt to fix typing
kmuehlbauer Oct 14, 2024
3c44aed
fix scalar datetime/timedelta
kmuehlbauer Oct 15, 2024
48be73a
fix user docs
kmuehlbauer Oct 15, 2024
7ac9983
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Oct 18, 2024
d86ad04
Fix variable tests, mostly datetime/timedelta is inittialized with us…
kmuehlbauer Oct 18, 2024
b5d0795
revert changes in _possible_convert_objects, this needs to be checked…
kmuehlbauer Oct 18, 2024
60324f0
fix doc link
kmuehlbauer Oct 18, 2024
6f2861a
Merge branch 'main' into any-time-resolution-2
kmuehlbauer Nov 8, 2024
1f07500
Apply suggestions from code review
kmuehlbauer Nov 8, 2024
798b444
Merge branch 'main' into any-time-resolution-2
kmuehlbauer Nov 8, 2024
f487599
Merge branch 'main' into any-time-resolution-2
kmuehlbauer Nov 16, 2024
20d6c9d
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Nov 16, 2024
7391948
remove outdated description
kmuehlbauer Nov 16, 2024
308091c
use set instead list
kmuehlbauer Nov 16, 2024
5f40b4e
remove global option
kmuehlbauer Nov 16, 2024
2a65d8d
mypy thinks `unit` is Literal, because the pandas-stubs suggest so, b…
kmuehlbauer Nov 17, 2024
43f7d61
ignore mypy arg-type
kmuehlbauer Nov 17, 2024
59934b9
fix docstring of `default_precision_timestamp`
kmuehlbauer Nov 17, 2024
a01f9f3
add 'time_unit'-kwarg to decode_cf and descendent functions with "ns"…
kmuehlbauer Nov 17, 2024
8b91128
fix tests
kmuehlbauer Nov 17, 2024
0e351ca
fix more tests
kmuehlbauer Nov 17, 2024
07a8e9c
fix docstring
kmuehlbauer Nov 17, 2024
2be5739
use pd.Timestamp(np.datetime64(cftime)) to convert from cftime to numpy
kmuehlbauer Nov 17, 2024
b9d0a8e
use dt = np.datetime64(cftime.isoformat()) to convert from cftime to …
kmuehlbauer Nov 18, 2024
08afc3b
fix time-coding.rst
kmuehlbauer Nov 18, 2024
edc55e1
use us in to_datetimeindex
kmuehlbauer Nov 18, 2024
bffe919
revert back to us for datetimeindex tests
kmuehlbauer Nov 18, 2024
150b982
estimate fitting resolution for floating point values, when decoding …
kmuehlbauer Nov 18, 2024
7113ceb
add test
kmuehlbauer Nov 18, 2024
7f47f0b
refactor floating point decoding
kmuehlbauer Nov 18, 2024
512808d
Merge branch 'main' into any-time-resolution-2
kmuehlbauer Nov 18, 2024
63c83f4
simplify recursive function, update tests
kmuehlbauer Nov 18, 2024
0efbbeb
more refactoring, update tests
kmuehlbauer Nov 19, 2024
2910250
add fixture, apply fixture to more tests.
kmuehlbauer Nov 19, 2024
57d8d72
update time-coding.rst
kmuehlbauer Nov 19, 2024
5333240
fix typing
kmuehlbauer Nov 19, 2024
6f35c81
try to fix test, remove stale print
kmuehlbauer Nov 19, 2024
d0c17a4
another attempt to fix test
kmuehlbauer Nov 19, 2024
b2b6bb1
debug failing test
kmuehlbauer Nov 19, 2024
5dbc8a7
refactor cftime fallback in datetime decoding
kmuehlbauer Nov 21, 2024
be0d3e0
Merge branch 'main' into any-time-resolution-2
kmuehlbauer Nov 21, 2024
f95408a
fix merge-collission
kmuehlbauer Nov 21, 2024
609e15c
Merge branch 'main' into any-time-resolution-2
kmuehlbauer Nov 21, 2024
ec7f165
use CFDatetimeCoder instance to transport unit/use_cftime
kmuehlbauer Nov 22, 2024
1f1cf1c
decode_times with CFDatetimeCoder
kmuehlbauer Nov 25, 2024
14b1a88
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Nov 25, 2024
05627dd
Merge branch 'main' into any-time-resolution-2
kmuehlbauer Nov 25, 2024
e7cbf3a
fix mypy, warning/error
kmuehlbauer Nov 26, 2024
fc87e04
api, docs, docstrings
kmuehlbauer Nov 26, 2024
9ae645e
Merge branch 'main' into any-time-resolution-2
kmuehlbauer Nov 26, 2024
6e3ca57
Merge branch 'main' into any-time-resolution-2
kmuehlbauer Nov 27, 2024
277d1c6
docs, whats-new.rst
kmuehlbauer Nov 27, 2024
81a9d94
fix whats-new.rst
kmuehlbauer Nov 27, 2024
be8642f
Merge branch 'main' into any-time-resolution-2
kmuehlbauer Nov 27, 2024
f3f62e5
Merge branch 'main' into any-time-resolution-2
kmuehlbauer Dec 2, 2024
c07df41
Merge remote-tracking branch 'origin/main' into any-time-resolution-2
kmuehlbauer Dec 10, 2024
9653a01
fix tests after merge
kmuehlbauer Dec 10, 2024
f5822fd
Merge branch 'main' into any-time-resolution-2
kmuehlbauer Dec 12, 2024
66c0b9f
Apply suggestions from code review
kmuehlbauer Dec 13, 2024
ba51274
provide CFDatetimeCoder from xarray.coders
kmuehlbauer Dec 13, 2024
3ba3e3f
provide CFDatetimeCoder from xarray.coders
kmuehlbauer Dec 13, 2024
1ab43eb
provide CFDatetimeCoder from xarray.coders
kmuehlbauer Dec 13, 2024
45ba9d3
fix tests as suggested by code review
kmuehlbauer Dec 13, 2024
091a90d
Merge branch 'main' into any-time-resolution-2
kmuehlbauer Dec 14, 2024
ab3c9ed
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 14, 2024
53fe43a
Merge branch 'main' into any-time-resolution-2
kmuehlbauer Dec 16, 2024
a16a890
Move scalar handling logic into `_possibly_convert_objects` as sugges…
kmuehlbauer Dec 16, 2024
4283f8a
Add note on ``proleptic_gregorian`` calendar
kmuehlbauer Dec 16, 2024
0ba848d
remove time_resolution from docstring
kmuehlbauer Dec 16, 2024
6cb8702
update time.coding.rst wrt default time unit
kmuehlbauer Dec 16, 2024
5de8d0d
fix empty array
kmuehlbauer Dec 16, 2024
fc985d9
revert some tests to align with scalar logic handling
kmuehlbauer Dec 16, 2024
799b750
Merge branch 'main' into any-time-resolution-2
kmuehlbauer Dec 16, 2024
a2d8e69
split out CFDatetimeCoder into coders, deprecate use_cftime as keywor…
kmuehlbauer Nov 22, 2024
d6fe956
add whats-new.rst entry
kmuehlbauer Dec 17, 2024
bd6a5d1
Apply suggestions from code review
kmuehlbauer Dec 17, 2024
6557ef9
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 17, 2024
759fb72
fix warning
kmuehlbauer Dec 17, 2024
2118191
fix docstrings
kmuehlbauer Dec 17, 2024
262295a
try fix typing
kmuehlbauer Dec 17, 2024
941c4b5
Merge branch 'main' into any-time-resolution-2
kmuehlbauer Dec 18, 2024
6e41425
Merge branch 'main' into coders
kmuehlbauer Dec 18, 2024
adebafa
Apply suggestions from code review
kmuehlbauer Dec 30, 2024
6cd81e5
Apply suggestions from code review
kmuehlbauer Dec 30, 2024
1ae9a22
Merge branch 'main' into coders
kmuehlbauer Dec 30, 2024
1cec644
Update xarray/conventions.py
kmuehlbauer Dec 30, 2024
60aed87
Merge branch 'main' into coders
kmuehlbauer Jan 1, 2025
797dc85
Merge branch 'main' into any-time-resolution-2-wip
kmuehlbauer Jan 1, 2025
225c5b3
remove duplicate function (introduced when merging main)
kmuehlbauer Jan 1, 2025
33a1563
Update deprecated directive
kmuehlbauer Jan 2, 2025
4efe8b0
merge main into any-time-resolution-2
kmuehlbauer Jan 3, 2025
21a0ec6
Merge branch 'main' into coders
kmuehlbauer Jan 3, 2025
48dea20
merge coders into any-time-resolution-2
kmuehlbauer Jan 3, 2025
1145f4b
fix typing
kmuehlbauer Jan 3, 2025
a9990cf
re-fix doctests
kmuehlbauer Jan 3, 2025
5fa630f
merge main into any-time-resolution-2
kmuehlbauer Jan 4, 2025
43c85d1
fix whats-new.rst after merging main
kmuehlbauer Jan 4, 2025
a4702d6
Apply suggestions from code review
kmuehlbauer Jan 4, 2025
9bd292a
Apply suggestions from code review
kmuehlbauer Jan 4, 2025
25b797e
rewrite recursive function using for-loop
kmuehlbauer Jan 5, 2025
3bd8cf4
remove astype-construct in _possibly_convert_objects
kmuehlbauer Jan 5, 2025
8b9c85a
Update xarray/coding/times.py
kmuehlbauer Jan 5, 2025
2555d89
Merge branch 'main' into any-time-resolution-2
kmuehlbauer Jan 7, 2025
3b2d861
add suggestions from code review
kmuehlbauer Jan 7, 2025
66e181c
rephrase per suggestion
kmuehlbauer Jan 7, 2025
e380968
add article per suggestion
kmuehlbauer Jan 7, 2025
305938c
Apply suggestions from code review
kmuehlbauer Jan 7, 2025
b32b02c
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Jan 7, 2025
a2c46b1
fix scalar handling for timedelta based indexer
kmuehlbauer Jan 7, 2025
fa2c4b6
remove stale error message and "ignore:Converting non-default" in tes…
kmuehlbauer Jan 7, 2025
c65c9af
add per review suggestions
kmuehlbauer Jan 7, 2025
21dffc1
add/remove todo
kmuehlbauer Jan 7, 2025
8eeeb78
rename timeunit -> format
kmuehlbauer Jan 7, 2025
7ad2183
return "ns" resolution per default for timedeltas, if not specified
kmuehlbauer Jan 7, 2025
9e4cab6
Be specific on types/dtpyes
kmuehlbauer Jan 7, 2025
5964a9e
add comment
kmuehlbauer Jan 7, 2025
308391d
add suggestions from code review
kmuehlbauer Jan 7, 2025
0e886d6
Merge branch 'main' into any-time-resolution-2
kmuehlbauer Jan 7, 2025
d494fe0
fix docs
kmuehlbauer Jan 8, 2025
ef6f722
fix test which isn't run for numpy2 atm
kmuehlbauer Jan 8, 2025
4ea5241
add notes on to_datetime section, update examples showing usage of 'a…
kmuehlbauer Jan 8, 2025
151e9cd
use np.timedelta64 for to_timedelta example, update as_unit example, …
kmuehlbauer Jan 8, 2025
8ecda4e
remove note
kmuehlbauer Jan 8, 2025
2bbf0ff
Apply suggestions from code review
kmuehlbauer Jan 8, 2025
0308672
refactor timedelta decoding to _numbers_to_timedelta and res-use it w…
kmuehlbauer Jan 9, 2025
b043020
fix conventions test, add todo
kmuehlbauer Jan 9, 2025
7182ce2
run times through pd.Timestamp to catch possible overflows
kmuehlbauer Jan 9, 2025
470235e
fix tests for cftime_to_nptime
kmuehlbauer Jan 9, 2025
e619a4c
fix cftime_to_nptime in cftimeindex
kmuehlbauer Jan 9, 2025
700e78d
introduce pd.Timestamp instance check
kmuehlbauer Jan 9, 2025
4525ea1
warn if out-of-bound datetimes are encoded with standard calendar, fa…
kmuehlbauer Jan 9, 2025
0b93dbd
fix time-coding.rst, add reference to time-series.rst.
kmuehlbauer Jan 9, 2025
b38cd7e
try to fix typing, ignore one
kmuehlbauer Jan 9, 2025
a2d1c96
try to fix docs
kmuehlbauer Jan 9, 2025
c4b2af3
revert doc-changes
kmuehlbauer Jan 9, 2025
45a0d56
Add a non-ns test for polyval, polyfit
dcherian Jan 9, 2025
3ef79cd
Merge branch 'main' into any-time-resolution-2
kmuehlbauer Jan 10, 2025
ac719e8
more doc cosmetics
kmuehlbauer Jan 10, 2025
5292569
add whats-new.rst entry
kmuehlbauer Jan 10, 2025
ecd603b
add/fix coder docstring
kmuehlbauer Jan 10, 2025
f6716dc
add xr.date_range example as suggested per review
kmuehlbauer Jan 10, 2025
0556376
Apply suggestions from code review
kmuehlbauer Jan 13, 2025
ffc1828
Implement `time_unit` option for `decode_cf_timedelta` (#3)
spencerkclark Jan 13, 2025
eaf3c73
fix typing
kmuehlbauer Jan 13, 2025
1e6ba18
use nanmin/nanmax, catch numpy RuntimeWarnings
kmuehlbauer Jan 13, 2025
85a340b
Apply suggestions from code review
spencerkclark Jan 14, 2025
db69b63
Merge branch 'main' into any-time-resolution-2
kmuehlbauer Jan 15, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/internals/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -26,3 +26,4 @@ The pages in this section are intended for:
how-to-add-new-backend
how-to-create-custom-index
zarr-encoding-spec
time-coding
475 changes: 475 additions & 0 deletions doc/internals/time-coding.rst

Large diffs are not rendered by default.

4 changes: 2 additions & 2 deletions doc/user-guide/io.rst
Original file line number Diff line number Diff line change
Expand Up @@ -540,8 +540,8 @@ The ``units`` and ``calendar`` attributes control how xarray serializes ``dateti
``timedelta64`` arrays to datasets on disk as numeric values. The ``units`` encoding
should be a string like ``'days since 1900-01-01'`` for ``datetime64`` data or a string
like ``'days'`` for ``timedelta64`` data. ``calendar`` should be one of the calendar types
supported by netCDF4-python: 'standard', 'gregorian', 'proleptic_gregorian' 'noleap',
'365_day', '360_day', 'julian', 'all_leap', '366_day'.
supported by netCDF4-python: ``'standard'``, ``'gregorian'``, ``'proleptic_gregorian'``, ``'noleap'``,
``'365_day'``, ``'360_day'``, ``'julian'``, ``'all_leap'``, ``'366_day'``.

By default, xarray uses the ``'proleptic_gregorian'`` calendar and units of the smallest time
difference between values, with a reference time of the first time value.
Expand Down
47 changes: 33 additions & 14 deletions doc/user-guide/time-series.rst
Original file line number Diff line number Diff line change
Expand Up @@ -21,20 +21,40 @@ core functionality.
Creating datetime64 data
------------------------

Xarray uses the numpy dtypes ``datetime64[ns]`` and ``timedelta64[ns]`` to
represent datetime data, which offer vectorized (if sometimes buggy) operations
with numpy and smooth integration with pandas.
Xarray uses the numpy dtypes ``datetime64[unit]`` and ``timedelta64[unit]``
(where unit is one of ``"s"``, ``"ms"``, ``"us"`` and ``"ns"``) to represent datetime
data, which offer vectorized operations with numpy and smooth integration with pandas.

To convert to or create regular arrays of ``datetime64`` data, we recommend
using :py:func:`pandas.to_datetime` and :py:func:`pandas.date_range`:

.. ipython:: python

pd.to_datetime(["2000-01-01", "2000-02-02"])
kmuehlbauer marked this conversation as resolved.
Show resolved Hide resolved
pd.DatetimeIndex(
["2000-01-01 00:00:00", "2000-02-02 00:00:00"], dtype="datetime64[s]"
)
pd.date_range("2000-01-01", periods=365)
pd.date_range("2000-01-01", periods=365, unit="s")

It is also possible to use corresponding :py:func:`xarray.date_range`:

.. ipython:: python

xr.date_range("2000-01-01", periods=365)
xr.date_range("2000-01-01", periods=365, unit="s")


.. note::
Care has to be taken to create the output with the wanted resolution.
For :py:func:`pandas.date_range` the ``unit``-kwarg has to be specified
and for :py:func:`pandas.to_datetime` the selection of the resolution
isn't possible at all. For that :py:class:`pd.DatetimeIndex` can be used
directly. There is more in-depth information in section
:ref:`internals.timecoding`.

Alternatively, you can supply arrays of Python ``datetime`` objects. These get
converted automatically when used as arguments in xarray objects:
converted automatically when used as arguments in xarray objects (with us-resolution):

.. ipython:: python

Expand All @@ -51,12 +71,13 @@ attribute like ``'days since 2000-01-01'``).
.. note::

When decoding/encoding datetimes for non-standard calendars or for dates
before year 1678 or after year 2262, xarray uses the `cftime`_ library.
before `1582-10-15`_, xarray uses the `cftime`_ library by default.
It was previously packaged with the ``netcdf4-python`` package under the
name ``netcdftime`` but is now distributed separately. ``cftime`` is an
:ref:`optional dependency<installing>` of xarray.

.. _cftime: https://unidata.github.io/cftime
.. _1582-10-15: https://en.wikipedia.org/wiki/Gregorian_calendar


You can manual decode arrays in this form by passing a dataset to
Expand All @@ -66,17 +87,15 @@ You can manual decode arrays in this form by passing a dataset to

attrs = {"units": "hours since 2000-01-01"}
ds = xr.Dataset({"time": ("time", [0, 1, 2, 3], attrs)})
# Default decoding to 'ns'-resolution
xr.decode_cf(ds)
# Decoding to 's'-resolution
coder = xr.coders.CFDatetimeCoder(time_unit="s")
xr.decode_cf(ds, decode_times=coder)
kmuehlbauer marked this conversation as resolved.
Show resolved Hide resolved

One unfortunate limitation of using ``datetime64[ns]`` is that it limits the
native representation of dates to those that fall between the years 1678 and
2262. When a netCDF file contains dates outside of these bounds, dates will be
returned as arrays of :py:class:`cftime.datetime` objects and a :py:class:`~xarray.CFTimeIndex`
will be used for indexing. :py:class:`~xarray.CFTimeIndex` enables a subset of
the indexing functionality of a :py:class:`pandas.DatetimeIndex` and is only
fully compatible with the standalone version of ``cftime`` (not the version
packaged with earlier versions ``netCDF4``). See :ref:`CFTimeIndex` for more
information.
From xarray 2025.01.2 the resolution of the dates can be one of ``"s"``, ``"ms"``, ``"us"`` or ``"ns"``. One limitation of using ``datetime64[ns]`` is that it limits the native representation of dates to those that fall between the years 1678 and 2262, which gets increased significantly with lower resolutions. When a store contains dates outside of these bounds (or dates < `1582-10-15`_ with a Gregorian, also known as standard, calendar), dates will be returned as arrays of :py:class:`cftime.datetime` objects and a :py:class:`~xarray.CFTimeIndex` will be used for indexing.
:py:class:`~xarray.CFTimeIndex` enables most of the indexing functionality of a :py:class:`pandas.DatetimeIndex`.
See :ref:`CFTimeIndex` for more information.

Datetime indexing
-----------------
Expand Down
29 changes: 13 additions & 16 deletions doc/user-guide/weather-climate.rst
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@ Weather and climate data

import xarray as xr

Xarray can leverage metadata that follows the `Climate and Forecast (CF) conventions`_ if present. Examples include :ref:`automatic labelling of plots<plotting>` with descriptive names and units if proper metadata is present and support for non-standard calendars used in climate science through the ``cftime`` module(Explained in the :ref:`CFTimeIndex` section). There are also a number of :ref:`geosciences-focused projects that build on xarray<ecosystem>`.
Xarray can leverage metadata that follows the `Climate and Forecast (CF) conventions`_ if present. Examples include :ref:`automatic labelling of plots<plotting>` with descriptive names and units if proper metadata is present and support for non-standard calendars used in climate science through the ``cftime`` module (explained in the :ref:`CFTimeIndex` section). There are also a number of :ref:`geosciences-focused projects that build on xarray<ecosystem>`.

.. _Climate and Forecast (CF) conventions: https://cfconventions.org

Expand Down Expand Up @@ -57,15 +57,14 @@ CF-compliant coordinate variables

.. _CFTimeIndex:

Non-standard calendars and dates outside the nanosecond-precision range
-----------------------------------------------------------------------
Non-standard calendars and dates outside the precision range
------------------------------------------------------------

Through the standalone ``cftime`` library and a custom subclass of
:py:class:`pandas.Index`, xarray supports a subset of the indexing
functionality enabled through the standard :py:class:`pandas.DatetimeIndex` for
dates from non-standard calendars commonly used in climate science or dates
using a standard calendar, but outside the `nanosecond-precision range`_
(approximately between years 1678 and 2262).
using a standard calendar, but outside the `precision range`_ and dates prior to `1582-10-15`_.

.. note::

Expand All @@ -75,18 +74,14 @@ using a standard calendar, but outside the `nanosecond-precision range`_
any of the following are true:

- The dates are from a non-standard calendar
- Any dates are outside the nanosecond-precision range.
- Any dates are outside the nanosecond-precision range (prior xarray version 2025.01.2)
- Any dates are outside the time span limited by the resolution (from xarray version 2025.01.2)

Otherwise pandas-compatible dates from a standard calendar will be
represented with the ``np.datetime64[ns]`` data type, enabling the use of a
:py:class:`pandas.DatetimeIndex` or arrays with dtype ``np.datetime64[ns]``
and their full set of associated features.
represented with the ``np.datetime64[unit]`` data type (where unit can be one of ``"s"``, ``"ms"``, ``"us"``, ``"ns"``), enabling the use of a :py:class:`pandas.DatetimeIndex` or arrays with dtype ``np.datetime64[unit]`` and their full set of associated features.

As of pandas version 2.0.0, pandas supports non-nanosecond precision datetime
values. For the time being, xarray still automatically casts datetime values
to nanosecond-precision for backwards compatibility with older pandas
versions; however, this is something we would like to relax going forward.
See :issue:`7493` for more discussion.
values. From xarray version 2025.01.2 on, non-nanosecond precision datetime values are also supported in xarray (this can be parameterized via :py:class:`~xarray.coders.CFDatetimeCoder` and ``decode_times`` kwarg). See also :ref:`internals.timecoding`.

For example, you can create a DataArray indexed by a time
coordinate with dates from a no-leap calendar and a
Expand Down Expand Up @@ -115,7 +110,7 @@ instance, we can create the same dates and DataArray we created above using:
Mirroring pandas' method with the same name, :py:meth:`~xarray.infer_freq` allows one to
infer the sampling frequency of a :py:class:`~xarray.CFTimeIndex` or a 1-D
:py:class:`~xarray.DataArray` containing cftime objects. It also works transparently with
``np.datetime64[ns]`` and ``np.timedelta64[ns]`` data.
``np.datetime64`` and ``np.timedelta64`` data (with "s", "ms", "us" or "ns" resolution).

.. ipython:: python

Expand All @@ -137,7 +132,9 @@ Conversion between non-standard calendar and to/from pandas DatetimeIndexes is
facilitated with the :py:meth:`xarray.Dataset.convert_calendar` method (also available as
:py:meth:`xarray.DataArray.convert_calendar`). Here, like elsewhere in xarray, the ``use_cftime``
argument controls which datetime backend is used in the output. The default (``None``) is to
use ``pandas`` when possible, i.e. when the calendar is standard and dates are within 1678 and 2262.
use ``pandas`` when possible, i.e. when the calendar is ``standard``/``gregorian`` and dates starting with `1582-10-15`_. There is no such restriction when converting to a ``proleptic_gregorian`` calendar.

.. _1582-10-15: https://en.wikipedia.org/wiki/Gregorian_calendar

.. ipython:: python

Expand Down Expand Up @@ -241,6 +238,6 @@ For data indexed by a :py:class:`~xarray.CFTimeIndex` xarray currently supports:

da.resample(time="81min", closed="right", label="right", offset="3min").mean()

.. _nanosecond-precision range: https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timestamp-limitations
.. _precision range: https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timestamp-limitations
.. _ISO 8601 standard: https://en.wikipedia.org/wiki/ISO_8601
.. _partial datetime string indexing: https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#partial-string-indexing
35 changes: 33 additions & 2 deletions doc/whats-new.rst
Original file line number Diff line number Diff line change
Expand Up @@ -19,9 +19,39 @@ What's New
v2025.01.2 (unreleased)
-----------------------

This release brings non-nanosecond datetime resolution to xarray. In the
last couple of releases xarray has been prepared for that change. The code had
to be changed and adapted in numerous places, affecting especially the test suite.
The documentation has been updated accordingly and a new internal chapter
on :ref:`internals.timecoding` has been added.

To make the transition as smooth as possible this is designed to be fully backwards
compatible, keeping the current default of ``'ns'`` resolution on decoding.
To opt-in decoding into other resolutions (``'us'``, ``'ms'`` or ``'s'``) the
new :py:class:`coders.CFDatetimeCoder` is used as parameter to ``decode_times``
kwarg (see also :ref:`internals.default_timeunit`):

.. code-block:: python

coder = xr.coders.CFDatetimeCoder(time_unit="s")
ds = xr.open_dataset(filename, decode_times=coder)

There might slight changes when encoding/decoding times as some warning and
error messages have been removed or rewritten. Xarray will now also allow
non-nanosecond datetimes (with ``'us'``, ``'ms'`` or ``'s'`` resolution) when
creating DataArray's from scratch, picking the lowest possible resolution:

.. ipython:: python

xr.DataArray(data=[np.datetime64("2000-01-01", "D")], dims=("time",))

In a future release the current default of ``'ns'`` resolution on decoding will
eventually be deprecated.

New Features
~~~~~~~~~~~~

- Relax nanosecond datetime restriction in CF time decoding (:issue:`7493`, :pull:`9618`).
By `Kai Mühlbauer <https://github.com/kmuehlbauer>`_.
spencerkclark marked this conversation as resolved.
Show resolved Hide resolved

Breaking changes
~~~~~~~~~~~~~~~~
Expand All @@ -37,7 +67,8 @@ Bug fixes

Documentation
~~~~~~~~~~~~~

- A chapter on :ref:`internals.timecoding` is added to the internal section (:pull:`9618`).
By `Kai Mühlbauer <https://github.com/kmuehlbauer>`_.

Internal Changes
~~~~~~~~~~~~~~~~
Expand Down
9 changes: 6 additions & 3 deletions xarray/backends/api.py
Original file line number Diff line number Diff line change
Expand Up @@ -775,7 +775,8 @@ def open_dataarray(
be replaced by NA. This keyword may not be supported by all the backends.
decode_times : bool, CFDatetimeCoder or dict-like, optional
If True, decode times encoded in the standard NetCDF datetime format
into datetime objects. Otherwise, use :py:class:`coders.CFDatetimeCoder` or leave them encoded as numbers.
into datetime objects. Otherwise, use :py:class:`coders.CFDatetimeCoder` or
leave them encoded as numbers.
Pass a mapping, e.g. ``{"my_variable": False}``,
to toggle this feature per-variable individually.
This keyword may not be supported by all the backends.
Expand Down Expand Up @@ -984,7 +985,8 @@ def open_datatree(
This keyword may not be supported by all the backends.
decode_times : bool, CFDatetimeCoder or dict-like, optional
If True, decode times encoded in the standard NetCDF datetime format
into datetime objects. Otherwise, use :py:class:`coders.CFDatetimeCoder` or leave them encoded as numbers.
into datetime objects. Otherwise, use :py:class:`coders.CFDatetimeCoder` or
leave them encoded as numbers.
Pass a mapping, e.g. ``{"my_variable": False}``,
to toggle this feature per-variable individually.
This keyword may not be supported by all the backends.
Expand Down Expand Up @@ -1210,7 +1212,8 @@ def open_groups(
This keyword may not be supported by all the backends.
decode_times : bool, CFDatetimeCoder or dict-like, optional
If True, decode times encoded in the standard NetCDF datetime format
into datetime objects. Otherwise, use :py:class:`coders.CFDatetimeCoder` or leave them encoded as numbers.
into datetime objects. Otherwise, use :py:class:`coders.CFDatetimeCoder` or
leave them encoded as numbers.
Pass a mapping, e.g. ``{"my_variable": False}``,
to toggle this feature per-variable individually.
This keyword may not be supported by all the backends.
Expand Down
18 changes: 4 additions & 14 deletions xarray/coding/cftime_offsets.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,7 @@
from xarray.core.common import _contains_datetime_like_objects, is_np_datetime_like
from xarray.core.pdcompat import (
count_not_none,
nanosecond_precision_timestamp,
default_precision_timestamp,
)
from xarray.core.utils import attempt_import, emit_user_level_warning

Expand All @@ -81,14 +81,6 @@
T_FreqStr = TypeVar("T_FreqStr", str, None)


def _nanosecond_precision_timestamp(*args, **kwargs):
# As of pandas version 3.0, pd.to_datetime(Timestamp(...)) will try to
# infer the appropriate datetime precision. Until xarray supports
# non-nanosecond precision times, we will use this constructor wrapper to
# explicitly create nanosecond-precision Timestamp objects.
return pd.Timestamp(*args, **kwargs).as_unit("ns")


def get_date_type(calendar, use_cftime=True):
"""Return the cftime date type for a given calendar name."""
if TYPE_CHECKING:
Expand All @@ -97,7 +89,7 @@ def get_date_type(calendar, use_cftime=True):
cftime = attempt_import("cftime")

if _is_standard_calendar(calendar) and not use_cftime:
return _nanosecond_precision_timestamp
return default_precision_timestamp

calendars = {
"noleap": cftime.DatetimeNoLeap,
Expand Down Expand Up @@ -1427,10 +1419,8 @@ def date_range_like(source, calendar, use_cftime=None):
if is_np_datetime_like(source.dtype):
# We want to use datetime fields (datetime64 object don't have them)
source_calendar = "standard"
# TODO: the strict enforcement of nanosecond precision Timestamps can be
# relaxed when addressing GitHub issue #7493.
source_start = nanosecond_precision_timestamp(source_start)
source_end = nanosecond_precision_timestamp(source_end)
source_start = default_precision_timestamp(source_start)
source_end = default_precision_timestamp(source_end)
else:
if isinstance(source, CFTimeIndex):
source_calendar = source.calendar
Expand Down
5 changes: 3 additions & 2 deletions xarray/coding/cftimeindex.py
Original file line number Diff line number Diff line change
Expand Up @@ -581,13 +581,14 @@ def to_datetimeindex(self, unsafe=False):
CFTimeIndex([2000-01-01 00:00:00, 2000-01-02 00:00:00],
dtype='object', length=2, calendar='standard', freq=None)
>>> times.to_datetimeindex()
kmuehlbauer marked this conversation as resolved.
Show resolved Hide resolved
DatetimeIndex(['2000-01-01', '2000-01-02'], dtype='datetime64[ns]', freq=None)
DatetimeIndex(['2000-01-01', '2000-01-02'], dtype='datetime64[us]', freq=None)
"""

if not self._data.size:
return pd.DatetimeIndex([])

nptimes = cftime_to_nptime(self)
# transform to us-resolution is needed for DatetimeIndex
nptimes = cftime_to_nptime(self, time_unit="us")
calendar = infer_calendar_name(self)
if calendar not in _STANDARD_CALENDARS and not unsafe:
warnings.warn(
Expand Down
Loading
Loading